
SPECIFICATION CASE STUDIES
Second Edition

Copyright c© 1987, 1992 Prentice Hall International
(UK) Ltd

Appendices A and B may be copied for educational
purposes.

Edited by
Ian Hayes

With Contributions by
Bill Flinn

Roger Gimson
Steve King

Carroll Morgan
Ib Holm Sørensen
Bernard Sufrin

ii

Contents

I Tutorials 1

1 Small examples of specification using mathematics 3
Ian Hayes
1.1 Introduction . 3
1.2 A symbol table . 3
1.3 File update . 7
1.4 Sorting . 9
1.5 Solutions to exercises . 11

2 Block-structured symbol table 13
Ian Hayes
2.1 Introduction . 13
2.2 Symbol table . 13

2.2.1 The state . 14
2.2.2 Operations . 14
2.2.3 Errors . 16

2.3 Block-structured symbol table . 18
2.3.1 The state . 18
2.3.2 Operations . 20
2.3.3 Errors . 23

2.4 Other approaches . 25
2.5 Solutions to exercises . 25

3 Telephone network 29
Carroll Morgan
3.1 Introduction . 29
3.2 The specification . 29

3.2.1 Call . 31
3.2.2 HangUp . 31
3.2.3 Engaged . 32

3.3 Exercises . 32
3.4 Solutions to exercises . 33
3.5 Supplementary exercises . 37

v

vi CONTENTS

II Software engineering 39

4 Unix filing system 41
Carroll Morgan and Bernard Sufrin
4.1 Introduction . 41
4.2 Scope of the specification . 43
4.3 The specification . 43

4.3.1 Bytes and files . 43
4.3.2 Reading and writing . 44
4.3.3 File storage . 47
4.3.4 Reading and writing stored files – framing 48
4.3.5 Hiding and simplification . 50
4.3.6 Sequential access to files . 50
4.3.7 Channel system . 52
4.3.8 The access system . 52
4.3.9 A file naming system . 55
4.3.10 Pathnames and directories . 56
4.3.11 Directories are files . 57
4.3.12 The complete filing system . 57
4.3.13 Honesty of definitions . 60
4.3.14 Observation renaming and schema composition 61
4.3.15 Definition of error conditions 63

4.4 Summary . 64
4.5 Appendix: differences from Unix . 67

4.5.1 File size . 67
4.5.2 Directory size . 67
4.5.3 Storage medium capacity . 68
4.5.4 Seek . 68
4.5.5 Representation of numbers . 69

5 CAVIAR 71
Bill Flinn and Ib Holm Sørensen
5.1 Introduction . 71
5.2 The case study . 72
5.3 Identification of the basic sets . 73
5.4 The subsystems of CAVIAR . 73
5.5 Modules . 74
5.6 Module: Resource User [T, R, U] . 75
5.7 Specialisations of the resource–user system 79

5.7.1 Module: Exclusive Resource[T, R, U] 79
5.7.2 Module: Sole Resource[T, R, U] 80
5.7.3 Module: Sole Exclusive Resource[T, R, U] 81
5.7.4 The specification library . 81

5.8 Classification and instantiation . 81
5.8.1 Some laws for CAVIAR . 81
5.8.2 Matching systems with models 83
5.8.3 Module: Hotel Reservation . 83
5.8.4 Module: Transport Reservation 84

5.9 The meeting attendance subsystem . 85
5.9.1 Module: Resource Pool [T, X] 85

CONTENTS vii

5.9.2 Module: Meeting Visitor . 86
5.10 The meeting resource subsystems . 87

5.10.1 Module: Diary System[T, X, IX] 87
5.10.2 Module: Conference Room Booking 88
5.10.3 Module: Dining Room Booking 90
5.10.4 Module: Visitor Pool . 91
5.10.5 The construction process . 92

5.11 Module: CAVIAR . 92
5.11.1 Combining subsystems to form the state 93
5.11.2 Operations that involve meetings only 94
5.11.3 Operations that involve visitors only 96
5.11.4 A general visitor removal operation 96

5.12 Conclusion . 97

6 ICL Data Dictionary 99
Bernard Sufrin
6.1 Introduction . 100
6.2 Overview of the Data Dictionary System 100
6.3 Access control . 101

6.3.1 Abstract information structures of DDS 101
6.4 DDS dynamics: Part 1 . 106

6.4.1 The state of a running DDS . 106
6.4.2 The display command . 109
6.4.3 Setting the element context . 109

6.5 Access-control information . 110
6.6 DDS dynamics: Part 2 . 113

6.6.1 Inserting elements . 113
6.6.2 Deleting elements . 115

6.7 Prospects . 115
6.8 Appendix: potential simplifications . 116

7 Flexitime specification 121
Ian Hayes
7.1 Introduction . 121
7.2 State . 121
7.3 Operations . 122

8 Simple assembler 125
Ib Holm Sørensen and Bernard Sufrin
8.1 Introduction . 125

8.1.1 The structure of instructions 126
8.2 Requirements . 127

8.2.1 Symbol definitions . 127
8.2.2 Symbolic operands . 128
8.2.3 Numeric operands . 128
8.2.4 Symbolic opcodes . 128
8.2.5 Operands of machine instructions 129
8.2.6 Opcode fields . 129
8.2.7 Specification summary . 130
8.2.8 Consequences of the specification 130

viii CONTENTS

8.2.9 Discussion . 132
8.3 High-level design . 132

8.3.1 Design of the first phase . 133
8.3.2 Design of the second phase . 133
8.3.3 Putting the phases together . 134
8.3.4 Correctness of the design . 134
8.3.5 Discussion . 136

III Distributed Computing 137

9 The role of mathematical specifications 139
Roger Gimson and Carroll Morgan
9.1 Introduction . 139
9.2 A first example . 140
9.3 The first compromises . 141
9.4 A compromise avoided . 145
9.5 Modularity and composition of services 147
9.6 Conclusions . 149

10 Authentication of usernames 151
Roger Gimson and Carroll Morgan
10.1 Nicknames and usernames . 151
10.2 Authentication . 151
10.3 Guest user . 152

11 Time service – user manual 153
Roger Gimson and Carroll Morgan
11.1 Time service operation . 153
11.2 Error reports . 154
11.3 Modula-2 interface . 154

12 Reservation service – user manual 155
Roger Gimson and Carroll Morgan
12.1 Introduction . 155
12.2 Reservation service operations . 157
12.3 Error reports . 160
12.4 Modula-2 interface . 161

IV Transaction Processing 163

13 Application to industry 165
Ian Hayes
13.1 Introduction . 165
13.2 Uses of formal specification . 167
13.3 The specification process . 168

13.3.1 Notation . 169
13.4 A sample specification . 169

13.4.1 Exceptional conditions specification 170
13.4.2 The state . 170

CONTENTS ix

13.4.3 The operations . 171
13.4.4 Exception checking . 172

13.5 Questions raised . 173
13.5.1 Exceptional conditions . 173
13.5.2 Interval control . 175
13.5.3 Interaction between modules 176

13.6 Problems with specification . 176
13.6.1 Communication problems . 176
13.6.2 The right level of abstraction 177
13.6.3 Technical problems . 177

13.7 Conclusions . 178
13.8 Appendix: exceptional conditions manual 179

14 CICS restructure 183
Steve King
14.1 Introduction . 183
14.2 The CICS program product . 183
14.3 Early experiments . 184
14.4 The decision to use Z . 185
14.5 Education and tools . 186
14.6 Results . 187

14.6.1 Subjective results . 187
14.6.2 Quantitative results . 188

14.7 The Oxford–Hursley collaboration . 190
14.8 Conclusions . 192

15 CICS API specification 193
Steve King
15.1 Introduction . 193
15.2 Using Z to describe interfaces . 194
15.3 The CICS Application Programming Interface (API) 194
15.4 Reasons for specifying the API . 196
15.5 How the specifications were written . 197
15.6 Experiences . 198

15.6.1 Communication problems . 198
15.6.2 The ‘right’ level of abstraction 198
15.6.3 Putting modules together . 199
15.6.4 Parallelism . 200
15.6.5 Distributed systems . 200

15.7 Results . 201
15.8 Conclusions . 202

16 CICS Temporary Storage 203
Ian Hayes
16.1 A single queue . 203

16.1.1 Operations . 204
16.1.2 Errors . 207

16.2 Named queues . 208
16.3 A network of systems . 210

16.3.1 A note on the current implementation 211

x CONTENTS

17 CICS message system 213
Ian Hayes
17.1 Message output . 213
17.2 Multiple destinations . 214
17.3 Message input . 214
17.4 Send and receive . 215
17.5 Combining input and output . 215
17.6 Logical names . 215
17.7 Multiple logical destinations . 216
17.8 Domains of the operations . 217

V Appendices 219

A Glossary: Z mathematical notation 221
A.1 Definitions and declarations . 221
A.2 Axiomatic definitions . 222
A.3 Generic definitions . 222
A.4 Logic . 223
A.5 Sets . 224
A.6 Numbers . 225
A.7 Binary relations . 226
A.8 Functions . 228
A.9 Orders . 229
A.10 Sequences . 229
A.11 Bags . 231
A.12 Generalised bags . 233
A.13 Free type definitions . 234

B Glossary: Z schema notation 235
B.1 Schema definition . 235
B.2 Schema operators . 235
B.3 Operation schemas . 239
B.4 Operation schema operators . 240

Index 249

Foreword

Reading formal texts is like meeting people. Sometimes, you understand them
straightaway like good friends who take to each other immediately. At other times,
it is more difficult. You may parse what you read, but find it impossible to work
out any meaning. With the latter, you have to be patient, ask questions, explore
the surroundings; in other words, it is better for you to be introduced through some
common good friends who volunteer to help you prepare for the first meeting.

Large computer programs, to say the least, pertain to the category of formal texts
whose meanings are not immediately obvious! For that reason, people have been
trying – for some time – to find out what kind of intermediate text would be best
suited to play the role of go-between.

This book reports on experiments made at Oxford University within this frame-
work: it shows how one may communicate ideas and meanings about existing (or
even not-yet-written) computer programs, and this by using conventional mathemat-
ical notations of ordinary logic and elementary set theory.

The choice of a “standard” mathematical notation offers many advantages: it is
easy for a scientifically trained reader to understand; it is rigorous; it denotes rich
concepts (e.g., functions and their usual attributes: partiality vs. totality, domain,
range, etc.); and it is an open notation, because you may enlarge it at will.

Liberated from the burden of obeying the idiosyncracies of a particular language,
the authors of the various papers forming this book were free to experiment with
various styles depending on the problem at hand (but also on their personal taste).
In reading the book, I found it very exciting to discover how each situation was
formalised in a way different from that of others (or from what I had in mind). This
variety of style is reassuring: it indicates, if at all necessary, that there does not exist
any “normal” way of describing things rigorously.

However, despite this variety, all authors seem to have encountered at some point
or another a difficulty of the same nature—namely that of structuring the formal
text. To this common problem they decided to give a common answer in the form of
what is called a Schema, together with a corresponding Schema Calculus.

Roughly speaking, a Schema is a box within which certain variables of interest are
together declared, given types, and mutually constrained. The Schema Calculus gives
rules by which these boxes can be transformed or combined to produce other boxes.
The main advantages of this mechanism are its simplicity and immediate “visibility”.

In this book, the main emphasis has been put on using ordinary mathematical
notations in order to describe (specify) computer programs. Another important out-
come of any mathematical approach is that of performing proofs: this will be vital, of
course, in the process of software design by which specifications are gradually trans-
formed in order to obtain concrete programs. Here is the subject of another book.

J.-R. Abrial
Paris, February 1986

xi

xii

Preface to the first edition

Over the last six years the Programming Research Group of the Oxford University
Computing Laboratory has been the home for a number of projects which made
extensive use of mathematics for the specification of computer systems. The style
of specification which is used in this monograph emerged as a result of experience
gained on these projects. Specifications are presented using the notation known as Z,
which has evolved somewhat since it was originally introduced to us by Jean-Raymond
Abrial.

The Software Engineering Project, which began in 1978, has been the backbone of
the specification work. Both Tony Hoare and Bernard Sufrin were associated with the
project since its inception. Project staff have included Jean-Raymond Abrial, Tim
Clement, Martin Raskovsky, Ib Holm Sørensen, Stefan Sokolowski, and Phil Wadler.

The Distributed Computing Project began in 1982. Its goal was the specification
and construction of a loosely-coupled distributed operating system based on the model
of autonomous clients having access to shared services. Roger Gimson and Carroll
Morgan have been with the project since it began. The application of mathematical
specifications to distributed systems has had beneficial consequences both on the style
of specifications and on the design of the systems which were produced.

The Transaction Processing Project also began in 1982. It was a collaborative
project with IBM initiated to meet the challenge of applying mathematical specifi-
cation methods in a commercial environment. From the outset Ib Holm Sørensen
has run the project from the Oxford end and Peter Collins and John Nicholls have
taken responsibility from the IBM end. Tim Clement was associated with the project
during its first year; his succesor was Ian Hayes. Rod Burstall, Cliff Jones, and Tony
Hoare have acted as consultants. The project has demonstrated the benefits to be
gained from applying the methods to existing software.

None of the above work could have been done without the generous external sup-
port we received. The Software Engineering Project and the Distributed Computing
Project were both supported financially by the Science and Engineering Research
Council (UK), and the Transaction Processing Project was supported by IBM (UK)
Laboratories. And we have had indirect assistance from many industrial companies
who by attending our specification courses have given us the means and motivation
to prepare some of our tutorial material.

But we received more than just financial support from these sources, because of
course our work could not have been done in a vacuum. The enthusiasm and constant
encouragement of our industrial collaborators and SERC administrators helped us to
concentrate on real problems and to find practical solutions. So to them we are doubly
grateful.

The conviction that real software can be specified, and that ordinary mathematics
is the proper tool, has been passed on to all of the authors in turn by Tony Hoare

xiii

xiv

and Jean-Raymond Abrial, and to them we owe the greatest debt.
It remains to thank our very painstaking (and forgiving) referees, and others who

have helped us with their comments: Nigel Haigh, Jeff Sanders, and Jim Woodcock.
And finally we must thank Martin Raskovsky for his marvellous program which made
it possible to produce this book.

The authors
February, 1986

Preface to the second edition

In the six years since the first edition of Specification Case Studies, there has been a
growing interest in mathematically-based specification techniques such as Z. In these
years the Z notation has evolved, and many new books on Z have appeared. Of special
note is the work of Mike Spivey in producing a semantics for Z [54, 55] and a reference
manual for Z [56]. This reference manual has now become a de-facto standard for Z.

Inevitably, as Z has evolved some notational differences have been introduced. So
the primary objective of this second edition is make its use of notation consistent
with more recent books on Z. To that end it has been completely revised so that it
is now consistent (with some exceptions noted in the text) with the second edition of
the Z reference manual [57]. In addition, this book has been checked by the second
edition of Mike Spivey’s fuzz type checking program [53].

Use of this book The first edition of Specification Case Studies was envisaged
as a way of collecting together a body of research work on mathematically-based
specification. It has also been used as reference material for courses on specification.

Fortunately, there is a growing number of more introductory books on Z such as
[50, 65], not to mention the Z reference manual itself. These books present a detailed
introduction to the concepts and notations of Z. The present volume is complementary
to these introductory books, because it provides a collection of more substantial case
studies of using Z to specify realistic systems. Thus it can be used as a companion
to an introductory text for a course on specification. Alternatively, as with the first
edition, these more realistic examples may studied directly by the researcher or more
mathematically-literate practioner to gain an understanding of the capabilities of the
techniques in practice.

Changes from the first edition In revising this volume, as well as updating
the notation to be consistent with the Z reference manual, we have also taken the
opportunity to improve the exposition and, of course, correct errors in the first edition.
Additionally, some more major changes have been made. We outline these here.

The CAVIAR specification in Chapter 5 has been revised to make use of an ex-
perimental notation which adds modularisation facilities to Z. At the time the first
edition was produced, we were aware that the CAVIAR specification, with its reuse
of a number of specification structures, could benefit from making this structure ex-
plicit in the specification document itself. However, it was not clear then how to do
this. The modularisation features presented in Chapter 5 have been developed with
the aims both to keep the extensions to Z as simple as possible and to retain the
general flavour of Z. The modules added to Z by this extension can be viewed as
super-schemas. The newcomer to Z should be aware that these modularisation facil-

xv

xvi

ities are not a part of ‘standard’ Z, but we hope that they will make a contribution
to the development of a modularisation facility for Z.

Many people have asked about the progress of the use of Z by IBM Hursley. To this
end, two new Chapters 14 and 15 have been added to the book. Chapter 14 provides
an update on the use of Z in restructuring part of IBM’s Customer Information
Control System (CICS). For those interested in the experience of using such methods
in practice, this chapter gives an update on one of the largest and longest-running
industrial projects making use of Z.

Chapter 15 gives an overview of a more recent project undertaken at IBM Hursley
to specify the CICS Application Programming Interface. This work can be viewed as
an extension of the work presented in Chapter 13. However, it is on a larger scale.
Chapter 15 reports on the progress made on some of the problems outlined in Chapter
13.

Reading the book The book is divided into four parts, each part beginning with an
overview of its contents. Part I provides some tutorials introducing the basic concepts
used throughout the book. For those without any background in such methods Part
I is the obvious starting point.

The remaining parts of the book are the collections of case studies. Those in Part
II are all independent studies. Part III contains work done as part of the Distributed
Computing Project at the Programming Research Group and Part IV as part of
work done in collaboration with IBM (UK) Laboratories, Hursley, related to CICS,
a transaction processing system. The choice of which of these chapters is to be read
first depends on the background of the reader. For example, readers familiar with
the Unix filing system would be well advised to begin with Chapter 4.

An extensive glossary has been provided as two appendices at the end of the book.
The glossaries are not intended to be read from beginning to end, but rather to act as
a reference on the meaning of operators, etc. Appendix A contains the mathematical
notation of Z and Appendix B the Z schema notation. The appendices are organised
into sections covering related aspects. For example, when reading a case study that
makes extensive use of sequences, it may be worthwhile to browse the Z sequence
notation in Section A.10 to familiarise yourself with it.

For the second edition, the individual bibliographies of each chapter of the first
edition have been combined into a single extended bibliography. In addition, a com-
bined index has been provided. This indexes important terms used in the book as
well as all definitions occurring as part of the case study specifications.

Related work This volume has been largely concerned with specification. For work
on refinement of specifications to programs, a book by Carroll Morgan [45] treats the
refinement calculus and a paper by Steve King [37] discusses the relationship between
Z and the refinement calculus.

Z is closely related to the Vienna Development Method (VDM). Good starting
points for accessing the literature on VDM are the introductory text by Cliff Jones
[34] and the collection of case studies [35].

Workshops on Z have been held annually in the UK [5, 6, 48, 49] and workshops on
VDM have been held regularly [3, 13]. The latter has now widened its title to Formal
Methods Europe (FME). The network news group comp.specification discusses
specification in general and the subgroup comp.specification.z discusses issues
related to Z.

xvii

Acknowledgements We would like to thank Jonathan Bowen, Carroll Morgan and
Bernard Sufrin, for their help with the conversion of the text of the first edition to
LATEX. We would also like to acknowledge Mike Spivey for his collaboration in our
attempt to make both the second edition of the reference manual and the case studies
consistent, and for his help with the intricacies of his LATEX style used to produce this
book. We would also like to thank Brendan Mahony for his help in producing the
special founts needed for the CAVIAR paper. Finally, the referees are to be thanked
for their helpful and detailed comments on the second edition.

I.J.H.
June, 1992

xviii

Part I

TUTORIALS

Part I contains three chapters that provide tutorial introductions to the tech-
niques used in the remainder of the book. Chapter 1 introduces the notion of using
mathematics for specification through examples of a symbol table, file updating and
sorting. Chapter 2 introduces the schema notation by way of a specification of a
block-structured symbol table; it makes use of the simple symbol table specified in
Chapter 1. Chapter 3 provides a slightly more advanced example, in which both
the descriptive power of mathematics and the notational compactness of schemas are
exploited.

1

2

Chapter 1

Small examples of
specification using
mathematics

Ian Hayes

1.1 Introduction

This chapter is intended for people experienced in programming but not necessarily
in specification. It introduces specification using mathematics with the aid of a few
simple examples:

• a symbol table with operations to look up, update, and delete symbols;

• a file update; and

• sorting a sequence.

The chapter does not address the area of specifying large systems nor does it use
that part of Z designed to deal with building larger specifications. These aspects are
dealt with in later chapters.

Since readers are assumed to have some background in logic and basic set oper-
ations, these are treated sparingly. Readers without such background are advised to
refer to an introductory book that covers these areas, such as [65]. Definitions of all
the mathematical operators are given in Appendix A.

1.2 A symbol table

The first example specifies a simple symbol table. The specification demonstrates
the use of a mathematical function to specify a data type, and treats operations to
update, lookup, and delete entries in the symbol table. SYM is used to stand for the
set of symbols to be stored in the table, and VAL for the set of associated values.

3

4

As we assume no further structure on these types here, we introduce them as basic
types.

[SYM ,VAL]

A symbol table is modelled by a partial function from symbols, SYM , to values, VAL

st : SYM 7→ VAL

The arrow ‘ 7→’ indicates a function from SYM to VAL that is not necessarily defined
for all elements of SYM (hence ‘partial’). The subset of SYM for which it is defined
is its domain of definition

dom(st)

If a symbol s is in the domain of definition of st , that is, s ∈ dom(st), then st(s) is
the unique value associated with s and hence st(s) ∈ VAL. The notation {s 7→ v}
describes a function that is only defined for s

dom({s 7→ v}) = {s}

and which maps s to v

{s 7→ v}(s) = v

More generally we can use the notation

{ x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn }

where all the xk ’s are distinct, to define a function whose domain is

{x1, x2, . . . , xn}

and whose value for each xk is the corresponding yk . For example, if we let our
symbols be names and values be ages, the following mapping:

st = {‘John’ 7→ 23, ‘Mary’ 7→ 19}

maps ‘John’ onto 23 and ‘Mary’ onto 19. The domain of st is the set

dom(st) = {‘John’, ‘Mary’}

and

st(‘John’) = 23
st(‘Mary’) = 19

The range of st , ran(st), is the set of values that are associated with the symbols in
the table. For the example above

ran(st) = {19, 23}

The notation {} is used to denote the empty function whose domain of definition is
the empty set. Initially the symbol table is empty:

st = {}

1.2. A SYMBOL TABLE 5

The use of a function as a model for a symbol table is quite different to the normal
use of functions in computing, where an algorithm is given to compute the value of
the function for a given argument. Here instead we use it to describe a data structure.

There are many possible models that could be used to describe a symbol table. For
example, we could use a list of pairs of symbol and value, or a binary tree containing
a symbol and value in each node. These other models are not as abstract, because
many different lists (or trees) can represent the same function, and it is simpler if the
models for two symbol tables are equal whenever they give the same values for the
same symbols.

It is possible to distinguish between two unordered list representations which, if
regarded as symbol tables, are equal; on the other hand, for the function represen-
tation different functions represent different symbol tables. Thus the list and tree
models of a symbol table tend to bias an implementor, working from the specifica-
tion, towards a particular implementation. Of course, both lists and trees could be
used to implement such a symbol table, but any reasoning we wish to perform which
involves symbol tables is far easier if we use the partial function model rather than
either the list or the tree models. In general, the key to a good specification is the
choice of the model for the state of the system. It should have enough detail to allow
different objects to have different values in the model, but no more.

Because some operations can change the symbol table, we represent the effect of
an operation by the relationship between the value of the symbol table before the
operation and its value after the operation. We use

st , st ′ : SYM 7→ VAL

where by convention the undecorated symbol table, st , represents the state before the
operation and the dashed symbol table, st ′, represents the state after the operation.
The operation to update an entry in the table can be described mathematically by
the following schema:

Update
st , st ′ : SYM 7→ VAL
s? : SYM
v? : VAL

st ′ = st ⊕ {s? 7→ v?}

A schema consists of two parts: the declarations (above the centre line) in which
variables to be used in the schema are declared, and a predicate (below the centre
line) containing properties of, and relating those variables. In the schema Update the
second line declares a variable with name ‘s?’ which is the symbol to be updated.
The third line declares a variable with name ‘v?’ which is the value to be associated
with s? in the symbol table. By convention names in the declarations ending in ‘?’
are inputs and names ending in ‘!’ are outputs; the ‘?’ and ‘!’ are otherwise just part
of the name.

The predicate part of the schema states that it updates the symbol table (st) to
give a new symbol table (st ′) in which the symbol s? is associated with the value v?.
Any previous value associated with s? in the symbol table (if there was one) is lost.

The operator ‘⊕’ (function overriding) combines two functions of the same type
to give a new function. The new function f ⊕ g is defined for an argument x if either

6

f or g are defined for x

dom(f ⊕ g) = dom(f) ∪ dom(g)

and has the value g(x) if g is defined for x

x ∈ dom(g) ⇒ (f ⊕ g)(x) = g(x)

otherwise it has the value f (x)

x 6∈ dom(g) ∧ x ∈ dom(f) ⇒ (f ⊕ g)(x) = f (x)

For example,

{‘Mary’ 7→ 19, ‘John’ 7→ 23} ⊕ {‘John’ 7→ 25, ‘George’ 7→ 62}
= {‘Mary’ 7→ 19, ‘John’ 7→ 25, ‘George’ 7→ 62}

For the operation Update the value of st ′(x) is v? if x = s?, otherwise it is st(x)
provided x is in the domain of st . In this example we are only using ‘⊕’ to override
one value in the symbol table function; the operator ‘⊕’ is, however, more general:
both its arguments may be any functions of the same type.

The following schema describes the operation to look up an identifier in the symbol
table:

LookUp
st , st ′ : SYM 7→ VAL
s? : SYM
v ! : VAL

s? ∈ dom(st) ∧
v ! = st(s?) ∧
st ′ = st

The second line of the declarations introduces an input with name ‘s?’ which is the
symbol to be looked up. The third line of the declarations introduces an output with
name ‘v !’ which is the value that is associated with s? in the symbol table.

The first line of the predicate states that the identifier being looked up should be
in the symbol table before the operation is performed; the above schema does not
define the effect of looking up an identifier which is not in the table. The second line
states that the output value is the value associated with s? in the symbol table st .
The final line states that the contents of the symbol table is not changed by a LookUp
operation.

The operation to delete an entry in the symbol table is given by the following
schema:

Delete
st , st ′ : SYM 7→ VAL
s? : SYM

s? ∈ dom(st) ∧
st ′ = {s?} −C st

1.3. FILE UPDATE 7

To delete the entry for s? from the symbol table it must be in the table to start with:

s? ∈ dom(st)

The resultant symbol table st ′ is the symbol table st with s? deleted from its domain.
We use the domain exclusion operator ‘−C’. Given a set s and a function f, the domain
of s −C f is the domain of f minus the set s

dom(s −C f) = dom(f) \ s

where ‘\’ stands for set subtraction. The values that are left in the resultant function
are unchanged

x ∈ dom(s −C f) ⇒ (s −C f)(x) = f (x)

For example,

{‘Mary’, ‘John’} −C {‘Mary’ 7→ 19, ‘John’ 7→ 25, ‘George’ 7→ 62}
= {‘George’ 7→ 62}

Exercise 1.1 In place of a single Update operation define two separate operations,
Add , to add a symbol and value if the symbol is not already in the table, and Replace,
to replace the value associated with a symbol already in the table.

1.3 File update

The second example is a specification of a file update. It uses sets and functions to
model a file update operation. Each record in the file is indexed by a key. Key stands
for the set of all possible keys and Record the set of record values.

[Key ,Record]

We model the file as a partial function from keys to records

f : Key 7→ Record

A transaction may either delete an existing record or provide a new record which
either replaces an existing record or is added to the file. The transactions for an
update of a file are specified as a set of keys d? which are to be deleted from the file,
and a partial function u? giving the keys to be updated and their corresponding new
records. We add the further restriction that we cannot both delete a record with a
given key and provide a new record for that key. For example, if

f = {k1 7→ r1, k2 7→ r2, k3 7→ r3, k4 7→ r4}
d? = {k2, k4}
u? = {k3 7→ r5, k5 7→ r6}

then the resultant file f ′ is

f ′ = {k1 7→ r1, k3 7→ r5, k5 7→ r6}

The specification of a file update operation is given by the following schema:

8

FileUpdate
f , f ′ : Key 7→ Record
d? : P Key
u? : Key 7→ Record

d? ⊆ dom(f) ∧
d? ∩ dom(u?) = {} ∧
f ′ = (d?−C f)⊕ u?

The original file f and the updated file f ′ are modelled by partial functions from keys
to records. The keys to be deleted, d?, are a subset of Key . Hence d? is an element
of the powerset of Key (the set of all subsets of Key); the notation P Key is used to
denote the powerset of Key . The updates u? are specified as a partial function from
Key to Record .

Only records already in the file f may be deleted. Hence the set of keys to be
deleted d? must be a subset of the domain of the original file (d? ⊆ dom(f)). We
are precluded from trying both to delete a key and add a new record for the same
key because the intersection of the deletions with the domain of the updates must be
empty (d?∩dom(u?) = {}). The resultant file f ′ is the original file f with all records
corresponding to keys in d? deleted (d?−C f), overridden by the new records u?.

The last line of FileUpdate could have equivalently been written

f ′ = d?−C (f ⊕ u?)

Although it is not always the case that these two lines are equivalent, the extra
condition that the intersection of d? and dom(u?) is empty ensures their equivalence
in this case. The following lemma formalises this property.

Lemma Given d? ∩ dom(u?) = {} the following identity holds:

d?−C (f ⊕ u?) = (d?−C f)⊕ u?

Proof First, we show that the domains of the two sides are equal.

dom(d?−C (f ⊕ u?))
= dom(f ⊕ u?) \ d? defn −C
= (dom(f) ∪ dom(u?)) \ d? defn ⊕
= (dom(f) \ d?) ∪ (dom(u?) \ d?) distribution
= (dom(f) \ d?) ∪ dom(u?) as d? ∩ dom(u?) = {}
= dom(d?−C f) ∪ dom(u?) defn −C
= dom((d?−C f)⊕ u?) defn ⊕

Second, for any key k in the domain, we show the two sides are equal. We prove
this for the two cases: k ∈ dom(u?) and k 6∈ dom(u?).

(a) If k ∈ dom(u?) then

k 6∈ d? as dom(u?) ∩ d? = {}
(d?−C (f ⊕ u?))(k) = (f ⊕ u?)(k) as k 6∈ d?

= u?(k) as k ∈ dom(u?)
((d?−C f)⊕ u?)(k) = u?(k) as k ∈ dom(u?)

1.4. SORTING 9

(b) If k 6∈ dom(u?) then

(d?−C (f ⊕ u?))(k) = (f ⊕ u?)(k) as k ∈ dom(d?−C (f ⊕ u?))
= f (k) as k 6∈ dom(u?)

((d?−C f)⊕ u?)(k) = (d?−C f)(k) as k 6∈ dom(u?)
= f (k) as k ∈ dom(d?−C (f ⊕ u?))

2

In the specification of FileUpdate, if we were not given the extra restriction then, as
specified in the last line, the updating of records would have precedence over deletions.
If the alternative specification were used then deletions would have precedence over
updates. It is sensible to include the extra restriction in the specification as it allows
the most freedom in implementation without any real loss of generality.

Exercise 1.2 Define an operation, FileAdd , to add a number of keys with associated
records to a file. The keys should not already be contained in the file.

1.4 Sorting

The third example specifies sorting a sequence into non-decreasing order; it uses the
mathematical theories of sequences and bags (also know as multi-sets). See glossary
sections A.10 and A.11 for more details.

The input and the output of Sort are sequences of elements of a given type X ,
which has a total order ‘≺’ defined on it. A sequence is modelled as a partial function
from the positive natural numbers, N1 = {1, 2, 3, . . .}, to the base type X as follows:

seqX == {s : N1 7→ X | (∃n : N • dom(s) = 1 . . n)}

In Z, sequences are finite, so there must exist a natural number n which is the length
of the sequence. The domain of the function representing a sequence is the complete
set of natural numbers ranging from 1 to n. A sequence may be empty, in which case
it has length zero and the domain of the function modelling it is the empty set.

The notation of enclosing a list of elements in angle brackets is used to construct
a sequence consisting of the list of elements. For example,

t = 〈a, b, c〉 = {1 7→ a, 2 7→ b, 3 7→ c}

The empty sequence is denoted by 〈 〉.
We can select an element in a sequence by indexing the sequence with the position

of the element. For example,

t(2) = b
s = 〈s(1), s(2), . . . , s(#s)〉

where #s is the length of the sequence s (which is also the number of members of s
viewed as its representation as a set of pairs).

The output of Sort , out !, must be in non-decreasing order. We can specify this by
stating that out! is a member of the set of all non-decreasing sequences with elements

10

from the set X.

NonDecreasing ==
{s : seqX | ∀ i , j : dom s • (i < j) ⇒ ¬ (s(j) ≺ s(i))}

For all pairs of indices, i and j , in the domain of a nondecreasing sequence s, if i is
less than j , then s(j) is not less than s(i).

The output of Sort must contain the same values as the input, with the same
frequency. We can state this property using bags. A bag is similar to a set except
that multiple occurrences of an item in a bag are significant. We can model a bag of
items of base type X – i.e. the items have type X – as a partial function from the
items of type X to the frequency of occurrence of the items in the bag. We use the
notation [[. . .]] to construct a bag. For example, the bag

[[a, b, b, b]] = {a 7→ 1, b 7→ 3}

contains one copy of a and three copies of b. The following gives some examples of
how sets, bags and sequences are related:

{1, 2, 2} = {1, 2} = {2, 1}
[[1, 2, 2]] 6= [[1, 2]] = [[2, 1]]
〈1, 2, 2〉 6= 〈1, 2〉 6= 〈2, 1〉

In specifying Sort we would like to say that the bag formed from all the elements
in the output sequence is the same as the bag of elements in the input sequence,
because it is only the order that changes. We introduce the function items which
forms the bag of all the elements in a sequence. For example,

items(〈 〉) = [[]] = {}
items(〈1〉) = [[1]] = {1 7→ 1}

items(〈1, 2, 2〉) = items(〈2, 1, 2〉) = [[1, 2, 2]] = {1 7→ 1, 2 7→ 2}
items(〈1, 2, 3〉) = items(〈2, 1, 3〉) = [[1, 2, 3]] = {1 7→ 1, 2 7→ 1, 3 7→ 1}

More precisely, items can be defined as follows:

[X]
items : seqX → bag X

∀ x : X ; s, t : seqX •
items〈〉 = [[]] ∧
items〈x 〉 = [[x]] ∧
items(s a t) = items s] items t

Each element x that occurs in the sequence, x ∈ ran(s), is mapped onto its frequency
of occurrence in the sequence (i.e. the size of the set of positions in the sequence that
have value x). (The above definition of items is more restricted than the definition
given in the glossary; the latter is generalised to operate on any relation.) For example,
if s = 〈3, 4, 3, 6〉 then

ran(s) = {3, 4, 6}

and

{i : dom(s) | s(i) = 3} = {1, 3}
{i : dom(s) | s(i) = 4} = {2}
{i : dom(s) | s(i) = 6} = {4}

1.5. SOLUTIONS TO EXERCISES 11

Hence

items(s) = {3 7→ #{1, 3}, 4 7→ #{2}, 6 7→ #{4}}
= {3 7→ 2, 4 7→ 1, 6 7→ 1}
= [[3, 3, 4, 6]]

We can now define that the output of the sort must have the same values, with
the same frequencies, as the input:

items(out !) = items(in?)

The complete specification of sorting is given by the combination of the properties
that the output is both ordered and has the same content as the input.

Sort
in?, out ! : seqX

out ! ∈ NonDecreasing ∧
items(out !) = items(in?)

The output of the sort is non-decreasing. The output sequence must contain the same
elements as the input, with the same frequency.

Sort is an example of a non-algorithmic specification: it specifies what Sort should
achieve but not how to go about achieving it. The advantage of a non-algorithmic
specification is that its meaning may be more obvious than one which contains the
extra detail necessary for it to be algorithmic. The specification is given in terms
of the (defining) properties of the problem without biasing the implementor towards
a particular form of algorithm. There are many possible sorting algorithms. For
example, both bubble sort and quick sort may be used to meet the above specification.
These algorithms have quite different efficiencies. The implementor should be allowed
the freedom to choose the most appropriate. Furthermore, any particular sorting
algorithm is more constraining than the above specification.

Exercise 1.3 Rewrite the sort specification to sort a sequence with no duplicates
into strictly ascending order.

Exercise 1.4 Write a specification of a merge of two non-decreasing sequences to
produce a non-decreasing sequence. Duplicates from the two inputs should all appear
in the output sequence. Hint: the sum of two bags b and c is denoted b] c; the
frequency of occurrence of an item in b] c is the sum of its frequencies in b and c.

1.5 Solutions to exercises

These solutions are samples; there is more than one correct solution to each exercise.

Solution 1.1

12

Add
st , st ′ : SYM 7→ VAL
s? : SYM
v? : VAL

s? 6∈ dom(st) ∧
st ′ = st ∪ {s? 7→ v?}

Replace
st , st ′ : SYM 7→ VAL
s? : SYM
v? : VAL

s? ∈ dom(st) ∧
st ′ = st ⊕ {s? 7→ v?}

Solution 1.2

FileAdd
f , f ′ : Key 7→ Record
a? : Key 7→ Record

dom(a?) ∩ dom(f) = {} ∧
f ′ = f ∪ a?

Solution 1.3

NoDuplicates == {s : seqX | ∀ i , j : dom s • i 6= j ⇒ s(i) 6= s(j)}
Ascending == {s : seqX | ∀ i , j : dom s • i < j ⇒ s(i) ≺ s(j)}

SortNoDup
in?, out ! : seqX

in? ∈ NoDuplicates ∧
out ! ∈ Ascending ∧
ran(in?) = ran(out !)

The last predicate of SortNoDup could also have been written

items(in?) = items(out !)

Solution 1.4

Merge
in1?, in2?, out ! : seqX

in1? ∈ NonDecreasing ∧
in2? ∈ NonDecreasing ∧
out ! ∈ NonDecreasing ∧
items(out !) = items(in1?)] items(in2?)

Chapter 2

Block-structured symbol
table

Ian Hayes

2.1 Introduction

A specification of a symbol table suitable for the sequential processing of block-
structured languages is given. This specification is intended to demonstrate how,
using Z, a specification can be built from components.

A simple symbol table suitable for a single block is described first; it has operations
to look up, add, replace and delete entries. This simple symbol table is the same as
that given in Chapter 1. The treatment given here emphasises how such a specification
can be built using the schema notation of Z [44, 57] and includes a treatment of error
conditions not given earlier. Readers not familiar with the mathematics used here
should consult Chapter 1 for a more detailed explanation.

Section 2.3 specifies a block-structured symbol table in terms of a sequence of
simple symbol tables, one for each nested block. Operations are given to search the
environment for a symbol, and to start and finish nested blocks; the operations on a
simple symbol table are promoted to work on the symbol table corresponding to the
smallest enclosing block.

2.2 Symbol table

A symbol table associates a unique value (from the set VAL) with a symbol (from
the set SYM):

[SYM ,VAL]

The operations allowed on a symbol table are to,

• look up the value associated with a symbol in the table;

13

14

• add a symbol with corresponding value, providing the symbol is not already in
the table;

• replace the value associated with a symbol already in the table; and

• delete a symbol and its associated value from the table.

To specify a symbol table, we first give a model of its state and a description of
its initial state, then we specify each of the operations in terms of the relationship
between the state before an operation, the inputs to the operation, the outputs from
the operation, and the state after the operation.1

2.2.1 The state

The state of a symbol table can be modelled by a partial function from symbols to
values:

ST == SYM 7→ VAL

Initially the symbol table is empty:

st0 == { }

2.2.2 Operations

Each operation on a symbol table transforms a symbol table before (st) into a symbol
table after (st ′):

∆ST =̂ [st , st ′ : ST]

The definition of each operation must include declarations of the ‘before’ and ‘after’
states of the operation; rather than write out these declarations in full in each defi-
nition, we introduce a schema ∆ST that contains just these declarations and include
this schema in the definition of each operation as an abbreviation for the declara-
tions. The ‘∆’ (for ‘change’) in ‘∆ST ’ is just part of the name of the schema; we
allow Greek letters in names. By convention names beginning with ‘∆’ are used for
schemas that contain before and after state components.

We use the horizontal form of schema definition here. The horizontal form con-
sists of an opening square bracket, declarations optionally followed by a vertical bar
and a predicate (∆ST does not include the optional predicate but ΞST, below, does),
and finishing with a closing square bracket.

Error handling and the operation to look up a symbol do not modify the symbol
table:

ΞST =̂ [∆ST | st ′ = st]

The schema ΞST declares the before and after states (in ∆ST) and constrains them
to be equal; this schema describes the effect on the state of inquiry-like operations
(such as looking up a symbol in the symbol table) and error handling; neither of these
modifies the state. The ‘Ξ’ (for no change) in ‘ΞST ’ is again just part of the name.

1Within this chapter paragraphs in italics have been added to explain the specification method,
notation, and conventions. They would not normally appear in such a specification.

2.2. SYMBOL TABLE 15

By convention names beginning with ‘Ξ’ are used for schemas which are written to
express that there is no change. Expanding the definition of ΞST we get the following
schema:

st , st ′ : ST

st ′ = st

To look up the value v ! associated with a symbol s? we use the operation LookUp.

LookUp
ΞST
s? : SYM
v ! : VAL

s? ∈ dom(st) ∧
v ! = st(s?)

The schema ΞST is used in the definition of LookUp to declare the before and after
states (st and st ′) and to constrain them to be equal. The convention of using the
ΞST schema saves writing out all the state components and the equality constraint
explicitly.

A schema may be included in the declaration part of a schema; the declarations
of the included schema are merged with the other declarations and its predicates are
conjoined with the predicates of the schema. Expanding the definition of LookUp we
get the following schema:

st , st ′ : ST
s? : SYM
v ! : VAL

st ′ = st ∧
s? ∈ dom(st) ∧
v ! = st(s?)

Schema inclusion is used extensively in Z to construct concise specifications.
A new symbol and corresponding value may be added to the symbol table provided

the symbol is not already in the table.

Add
∆ST
s? : SYM
v? : VAL

s? 6∈ dom(st) ∧
st ′ = st ∪ {s? 7→ v?}

This schema uses ∆ST to include the declarations of the before and after states.

16

The value associated with a symbol already in the table may be replaced using
the following operation:

Replace
∆ST
s? : SYM
v? : VAL

s? ∈ dom(st) ∧
st ′ = st ⊕ {s? 7→ v?}

An entry in the symbol table may be deleted using the following operation:

Delete
∆ST
s? : SYM

s? ∈ dom(st) ∧
st ′ = {s?} −C st

2.2.3 Errors

The operations LookUp, Replace, and Delete all have a precondition that the symbol
is present in the table: s? ∈ dom(st). Add has a precondition that the symbol is not
already in the table: s? 6∈ dom(st).

If the precondition of an operation is not met for a call on the operation, its effect
is not defined: the operation may do as it chooses. It may do nothing; it may abort the
program perhaps giving an appropriate error message; it may attempt the operation
and give incorrect results or scramble the state so that later calls to operations give
incorrect results or abort.

If we want operations to give error messages when their preconditions are not met,
then we need to specify error alternatives to cover these cases. If the alternatives cover
all such cases – the precondition of the operation, complete with alternatives, is true
– we call such a specification robust.

To specify error alternatives for the symbol table operations, we introduce a status
report that is returned by all operations. The status reports needed are defined by
the following alternatives:

Report ::= OK
| Symbol not present
| Symbol present
| Not within any block
| Symbol not found

For the LookUp, Replace, and Delete operations, if the symbol is not present an error
is reported and the symbol table is not modified.

2.2. SYMBOL TABLE 17

NotPresent
ΞST
s? : SYM
rep! : Report

s? 6∈ dom(st) ∧
rep! = Symbol not present

The schema ΞST is included in the above schema to introduce the declarations of the
before and after states and to constrain them to be equal.

An Add operation can fail if the symbol is already present in the table.

Present
ΞST
s? : SYM
rep! : Report

s? ∈ dom(st) ∧
rep! = Symbol present

Successful operations return a report of OK:

Success =̂ [rep! : Report | rep! = OK]

The operations with error handling follow:

STLookUp =̂ (LookUp ∧ Success) ∨ NotPresent
STAdd =̂ (Add ∧ Success) ∨ Present

STReplace =̂ (Replace ∧ Success) ∨ NotPresent
STDelete =̂ (Delete ∧ Success) ∨ NotPresent

Either a LookUp operation is successfully performed (if s? ∈ dom(st)), in which
case a report of OK is given, or the LookUp operation reports that the symbol is not
present.

The conjunction ‘∧’ of two schemas is formed by merging their declarations (vari-
ables common to both declarations must have the same type) and conjoining their
predicates. Below we expand the STLookUp operation. We do not normally find it
necessary to expand such definitions to understand the specification but the expansions
are intended to help those who are not familiar with the notation. The expansion of

LookUp ∧ Success

is

ΞST
s? : SYM
v ! : VAL
rep! : Report

s? ∈ dom(st) ∧
v ! = st(s?) ∧
rep! = OK

18

In this case there are no variables common to the declarations of the schemas LookUp
and Success.

The disjunction ‘∨’ of two schemas is formed by merging their declarations (vari-
ables common to both must have the same type) and disjoining their predicate parts.
The expansion of

(LookUp ∧ Success) ∨ NotPresent

is

ΞST
s? : SYM
v ! : VAL
rep! : Report

(s? ∈ dom(st) ∧ v ! = st(s?) ∧ rep! = OK)
∨
(s? 6∈ dom(st) ∧ rep! = Symbol not present)

In this case the declarations in ΞST and the declarations of s? and rep! are common
and have the same types, and hence can be merged. Note that no constraint (other
than that indicated by its type declaration) is placed on the value of v ! returned in the
error case.

Exercise 2.1 Give expanded forms of the two schemas STReplace and STDelete.

2.3 Block-structured symbol table

We now describe a symbol table suitable for use in processing (e.g. compiling) a block-
structured language such as Algol 60 and its many descendants. In such languages
each variable declaration is associated with a block and a variable may be referred to
only from within the block with which it is associated. Blocks may be nested within
other blocks to an arbitrary level. Each nested block must be completely enclosed
by the block in which it is included. For example, consider the fragment of Algol 60
in Figure 2.1. The outer block A declares variables x and y of type integer. These
variables may be referred to anywhere within block A, except that the variable y of
block A may not be referred to within block B because there is a variable with the
same name declared in block B : within block B the outer (block A) declaration of y
is hidden by the declaration of y in block B . We refer to those parts of the program
in which a variable may be referred to as being within the scope of that variable.

A symbol table suitable for processing of block-structured languages should sup-
port the scoping rules of block-structured languages. It should have operations for
starting and finishing blocks as well as operations to access, add, replace and delete
entries in the table.

2.3.1 The state

The simple symbol table described in Section 2.2 is suitable only for keeping track
of the variables of a single block. At a given point in a program we need to keep

2.3. BLOCK-STRUCTURED SYMBOL TABLE 19

begin A
integer x, y;
...
x := 2; y := 3; (1)
...
begin B

real y; integer z;
...
y := 0.5; x := z; (2)
...

end B;
...
y := x; (3)
...

end A

Figure 2.1: Example block-structured program

track of all the variables declared in all the blocks enclosing that point. This can be
done by associating a simple symbol table with each block enclosing the point. To
keep track of the order in which the blocks are nested we arrange the symbol tables
into a sequence so that, if a block A encloses another block B , the symbol table for
A precedes the symbol table for B in the sequence. We model a block-structured
symbol table by a sequence of symbol tables

BST == seqST

The first symbol table in the sequence is for the outermost block.
In the example given above, the block-structured symbol table within block A but

excluding block B (e.g. at the positions marked (1) and (3)) is a sequence containing
a single symbol table

〈{x 7→ integer , y 7→ integer}〉

where x , y and z are constants representing the corresponding variable names, and
integer and real are constants representing the corresponding types.

Within block B (e.g. at the position marked (2)) the sequence contains two symbol
tables

〈{x 7→ integer , y 7→ integer}, {y 7→ real , z 7→ integer}〉

At any point within a program at most one variable of a given name may be
referenced. We refer to the variables that may be referenced at a given point, along
with their associated information, as the environment of that point. An environment
may be represented as a simple symbol table. In the example above, the environment
within block A but excluding block B (namely (1) and (3)) is

{x 7→ integer , y 7→ integer}

20

and within block B it is equal to the symbol table for block A overridden by the
symbol table for block B

{x 7→ integer , y 7→ integer} ⊕ {y 7→ real , z 7→ integer}
= {x 7→ integer , y 7→ real , z 7→ integer}

In general, the environment corresponding to a block-structured symbol table
consisting of a sequence of symbol tables is given by overriding the symbol tables in
sequence. For example, for the sequence

〈st1, st2, . . . , stn〉

the environment is

st1 ⊕ st2 ⊕ · · · ⊕ stn

We can define the distributed override operator ‘⊕/’ which extracts the environ-
ment from a sequence of symbol tables by the following:

⊕/ : seqST → ST

∀ s : ST ; ss, tt : seqST •
⊕/〈〉 = {} ∧
⊕/〈s〉 = s ∧
⊕/(ss a tt) = (⊕/ ss)⊕ (⊕/ tt)

Initially no blocks have been entered; hence the block-structured symbol table is
the empty sequence:

bst0 == 〈 〉

2.3.2 Operations

The operations on a block-structured symbol table transform a state before (bst) to
a state after (bst ′):

∆BST =̂ [bst , bst ′ : BST]

Some operations leave the state unchanged:

ΞBST =̂ [∆BST | bst ′ = bst]

There are two operations that retrieve information about a symbol from a block-
structured symbol table: BLookUp and BSearch. BLookUp looks in the most nested
symbol table only; it is defined in terms of STLookUp. BSearch searches for a symbol
in the environment (i.e. the most nested occurrence of the symbol in the block-
structured symbol table). The specification of BSearch makes use of distributed
override.

BSearch0
ΞBST
s? : SYM
v ! : VAL

s? ∈ dom(⊕/ bst) ∧ v ! = (⊕/ bst)(s?)

2.3. BLOCK-STRUCTURED SYMBOL TABLE 21

We follow the convention of using the operation name BSearch with a ‘0’ appended
for the specification of the operation without any error handling. The robust operation
BSearch is specified in Section 2.3.3.

When the start of a block is encountered a new (empty) symbol table is appended
to the sequence.

BStart0
∆BST

bst ′ = bst a 〈st0〉

When the end of a block is encountered the last symbol table in the sequence is
deleted. This has a precondition that the sequence is non-empty.

BEnd0
∆BST

bst 6= 〈 〉 ∧ bst ′ = front(bst)

We want to be able to perform the simple symbol table operations (STAdd ,
STReplace, STLookUp and STDelete) on the most nested (last) symbol table in the
sequence. These operations can only be performed provided the sequence is non-
empty, and they change only the last symbol table in the sequence. The relationship
between the before and after values of the last symbol table in the sequence is deter-
mined by the simple symbol table operations.

A direct definition of the replace operation on the last symbol table in the sequence
is given by BReplace0. The predicate part of this schema has been written to highlight
its relationship to STReplace; the conditions at the end of the predicate are exactly
those in STReplace.

BReplace0
∆BST
s? : SYM
v? : VAL
rep! : Report
∆ST

bst 6= 〈 〉 ∧ front(bst ′) = front(bst) ∧
st = last(bst) ∧ st ′ = last(bst ′) ∧
((s? ∈ dom(st) ∧ st ′ = st ⊕ {s? 7→ v?} ∧ rep! = OK)
∨
(s? 6∈ dom(st) ∧ st ′ = st ∧ rep! = Symbol not present))

The other operations can be written in a similar manner, but here we would like
to make use of a technique known as promotion to define the operations on the last
symbol table in terms of the operations given earlier on a single symbol table. To do
this we pull out the common part of the promoted operations in a framing schema
ΦBST.

22

ΦBST
∆BST
∆ST

bst 6= 〈 〉 ∧
front(bst ′) = front(bst) ∧
st = last(bst) ∧
st ′ = last(bst ′)

The schema ΦBST does not specify the relationship between the last symbol table in
the sequence before (st) and after (st ′) an operation; we have already described these
relationships in our definitions of the simple symbol table operations. ΦBST just links
a single symbol table to the most nested one in the sequence bst. We can now define
the promoted symbol table operations in terms of the definitions of the simple symbol
table operations given earlier.

The promoted operations follow:

BLookUp0 =̂ STLookUp ∧ ΦBST
BAdd0 =̂ STAdd ∧ ΦBST

BReplace0 =̂ STReplace ∧ ΦBST
BDelete0 =̂ STDelete ∧ ΦBST

This definition of BReplace0 is equivalent to the one given earlier.
The state components st and st ′ are used in the above definition as the link

between the simple symbol table operation schema and the framing schema. The
state of the operation is really just bst and bst ′. The st and st ′ components can be
hidden.

A schema may have some of its components hidden by using existential quantifi-
cation. The declarations of the hidden variables are removed from the declaration
part of the schema and are existentially quantified in the predicate part. If the list
of components being quantified is replaced by a schema then all the variables in the
declaration part of the schema are hidden. As we wish to hide st and st ′, we quantify
with ∆ST.

BLookUp1 =̂ (∃∆ST • BLookUp0)
BAdd1 =̂ (∃∆ST • BAdd0)

BReplace1 =̂ (∃∆ST • BReplace0)
BDelete1 =̂ (∃∆ST • BDelete0)

The components of ∆ST (st and st ′) are hidden in the above definitions because we
wish to define the operations as working on before and after states which are of type
BST; the ∆ST components are only used to make the link between the specifications
of the operations on the simple symbol table and the part of the BST state that the
simple operations are to be performed on. The expanded form of BReplace1 is the
following:

2.3. BLOCK-STRUCTURED SYMBOL TABLE 23

BReplace1
∆BST
s? : SYM
v? : VAL
rep! : Report

∃∆ST • bst 6= 〈 〉 ∧ front(bst ′) = front(bst) ∧
st = last(bst) ∧ st ′ = last(bst ′) ∧
((s? ∈ dom(st) ∧ st ′ = st ⊕ {s? 7→ v?} ∧ rep! = OK)
∨
(s? 6∈ dom(st) ∧ st ′ = st ∧ rep! = Symbol not present))

This may be simplified by using the single point rule to eliminate the existential quan-
tifier: as st = last(bst) and st ′ = last(bst ′) we can replace all occurrences of st and
st ′ by last(bst) and last(bst ′), respectively.

∆BST
s? : SYM
v? : VAL
rep! : Report

bst 6= 〈 〉 ∧ front(bst ′) = front(bst) ∧
((s? ∈ dom(last(bst)) ∧ last(bst ′) = last(bst)⊕ {s? 7→ v?} ∧

rep! = OK)
∨
(s? 6∈ dom(last(bst)) ∧ last(bst ′) = last(bst) ∧
rep! = Symbol not present))

2.3.3 Errors

The upgraded operations and BEnd fail if the sequence is empty.

Empty
ΞBST
rep! : Report

bst = 〈 〉 ∧ rep! = Not within any block

The BSearch operation fails if the symbol is not in the environment. If the sequence
is empty we give preference to the Empty error. Hence, for this error, we require that
the sequence is non-empty.

NotFound
ΞBST
s? : SYM
rep! : Report

bst 6= 〈 〉 ∧ s? 6∈ dom(⊕/ bst) ∧ rep! = Symbol not found

24

The final definitions of the operations follow:

BSearch =̂ (BSearch0 ∧ Success) ∨ NotFound ∨ Empty
BStart =̂ BStart0 ∧ Success
BEnd =̂ (BEnd0 ∧ Success) ∨ Empty

BLookUp =̂ BLookUp1 ∨ Empty
BAdd =̂ BAdd1 ∨ Empty

BReplace =̂ BReplace1 ∨ Empty
BDelete =̂ BDelete1 ∨ Empty

An expanded and simplified definition of BSearch follows:

ΞBST
s? : SYM
v ! : VAL
rep! : Report

(s? ∈ dom(⊕/ bst) ∧ v ! = (⊕/ bst)(s?) ∧ rep! = OK)
∨
(bst 6= 〈 〉 ∧ s? 6∈ dom(⊕/ bst) ∧ rep! = Symbol not found)
∨
(bst = 〈 〉 ∧ rep! = Not within any block)

Here is a different expansion and simplification of BSearch. It is logically equiva-
lent to the one above, but achieves a different emphasis:

ΞBST
s? : SYM
v ! : VAL
rep! : Report

(bst = 〈 〉 ⇒ rep! = Not within any block)
∧
(bst 6= 〈 〉 ⇒

(s? ∈ dom(⊕/ bst) ⇒ v ! = (⊕/ bst)(s?) ∧ rep! = OK)
∧
(s? 6∈ dom(⊕/ bst) ⇒ rep! = Symbol not found))

Exercise 2.2 Give an expansion of BDelete.

Exercise 2.3 Define a search operation BLocate that returns not only the value
associated with a symbol but also the level of the innermost block in which it is
declared.

2.4. OTHER APPROACHES 25

2.4 Other approaches

The specification given above is just one approach to the specification of a block-
structured symbol table. It is tailored to sequential processing of a block-structured
language. An alternative approach that would allow for non-sequential processing is
to allocate a block identifier from the set

[BlockId]

to each block. The state then becomes a mapping from block identifiers to simple
symbol tables, along with a relation defining which blocks are contained in which.

BST1
bst : BlockId 7→ ST
contained : BlockId ↔ BlockId

contained∗ ∈ partial order[BlockId]

A quite different specification can be developed starting from this state.
Another alternative is to identify a block by the sequence of indices of blocks

enclosing it. As there can be more than one block directly nested within a given
enclosing block, we need to distinguish between the blocks by an index giving the
position of the block within its enclosing block. Any block is uniquely identified by a
sequence of such indices, which has length equal to the depth of nesting of the block:

PATH == seq N1

The block-structured symbol table is a mapping from paths to simple symbol tables.
As the paths represent the nesting structure, any prefix of a path indexing a block
must correspond to a block in the table.

BST2
bst : PATH 7→ ST

∀ p : dom bst •
∀ pr : PATH • pr ⊆ p ⇒ pr ∈ dom bst

These alternative specifications of the state of a block-structured symbol table are
just different views of the same abstract entity. None is any more valid than the
others. However, a particular view may be more suitable for specifying particular
properties of the system.

2.5 Solutions to exercises

Solution 2.1

26

STReplace
st , st ′ : SYM 7→ VAL
s? : SYM
v? : VAL
rep! : Report

(s? ∈ dom(st) ∧ st ′ = st ⊕ {s? 7→ v?} ∧ rep! = OK)
∨ (s? 6∈ dom(st) ∧ st ′ = st ∧ rep! = Symbol not present)

STDelete
st , st ′ : SYM 7→ VAL
s? : SYM
rep! : Report

(s? ∈ dom(st) ∧ st ′ = {s?} −C st ∧ rep! = OK)
∨ (s? 6∈ dom(st) ∧ st ′ = st ∧ rep! = Symbol not present)

Solution 2.2

BDelete
bst , bst ′ : seqST
s? : SYM
rep! : Report

(∃ st , st ′ : ST •
bst 6= 〈 〉 ∧
front(bst ′) = front(bst) ∧
st = last(bst) ∧
st ′ = last(bst ′) ∧
((s? ∈ dom(st) ∧ st ′ = {s?} −C st ∧ rep! = OK)
∨
(s? 6∈ dom(st) ∧ st ′ = st ∧
rep! = Symbol not found)))

∨
(bst = 〈 〉 ∧
bst ′ = bst ∧
rep! = Not within any block)

This is equivalent to the following:

2.5. SOLUTIONS TO EXERCISES 27

BDelete
bst , bst ′ : seqST
s? : SYM
rep! : Report

(bst 6= 〈 〉 ∧ s? ∈ dom(last(bst)) ∧
front(bst ′) = front(bst) ∧
last(bst ′) = {s?} −C last(bst) ∧
rep! = OK)
∨
(bst 6= 〈 〉 ∧ s? 6∈ dom(last(bst)) ∧
bst ′ = bst ∧
rep! = Symbol not found)
∨
(bst = 〈 〉 ∧
bst ′ = bst ∧
rep! = Not within any block)

Solution 2.3

BLocate0
ΞBST
s? : SYM
v ! : VAL
level ! : N

bst 6= 〈 〉 ∧ s? ∈ dom(⊕/ bst) ∧
level ! = max{i : dom(bst) | s? ∈ dom(bst(i))} ∧
v ! = bst(level !)(s?)

BLocate =̂ (BLocate0 ∧ Success) ∨ NotFound ∨ Empty

28

Chapter 3

Telephone network

Carroll Morgan

Abstract The specification of a simple telephone system is used to illustrate two
general features of specifications in Z:

• how the use of schemas can drastically reduce the amount of rewriting required
when developing specifications; and

• how the direct use of mathematics makes it possible to describe desired prop-
erties of an implementation without constraining the implementor’s choice of
algorithm.

Exercises and solutions to them are included. A similar but more comprehensive
specification is given in [42].

3.1 Introduction

We choose as our example a simple telephone network in which connections may be
established between pairs of telephones. A request may be made for the connection
of a given phone to any other; if the request cannot be satisfied immediately, it will
be stored by the network and satisfied, if possible, at some later time (for example,
the other phone might be engaged). We describe only three network operations:

Call – request a connection between two telephones;

HangUp – terminate a connection; and

Engaged – indicate whether a given telephone is currently engaged, and if so, with
which phone.

3.2 The specification

Let the set of telephones be PHONE :

[PHONE]

29

30

We define a connection to be a set of PHONE s:

CON == P PHONE

This definition allows the possibility of conference calls (connections c such that
#c > 2), as well as test calls perhaps made by maintenance staff (#c = 1). Even the
empty call is possible (but perhaps pointless).

The state of the telephone network is described by two variables:

reqs : P CON the set of connections requested but not yet terminated; and
cons : P CON the set of connections currently active.

These variables satisfy two invariants, i.e. properties of the system that are true
initially and after every operation:

cons ⊆ reqs only requested connections are active; and
cons ∈ disjoint no phone may engage in more than one connection at any

time.

The ‘disjoint’ used here applies to a set of sets (in contrast to the one defined in the
glossary). The definition of disjoint used here is the following:

[X]
disjoint : P(P(P X))

∀ cons : P(P X) •
cons ∈ disjoint ⇔ (∀ c1, c2 : cons • c1 6= c2 ⇒ c1 ∩ c2 = {})

Our state is described by the schema TN .

TN
reqs, cons : P CON

cons ⊆ reqs
cons ∈ disjoint

We follow a commonly used Z convention that explicit conjunctions (∧ symbols) are
not required for a list of conjoined predicates written one per line.

An efficient network, however, would at any time have activated as many connec-
tions as possible. We describe it with the following schema, efficientTN :

efficientTN
TN

¬ (∃ cons0 : P CON •
cons ⊂ cons0 ∧
TN [cons0/cons])

efficientTN requires the set of connections cons to be maximal with respect to TN ,
i.e. at any time it must not be possible to augment the set while continuing to
satisfy the TN invariant. Notice that it is not necessary to select an algorithm for
achieving maximality: it is sufficient simply to state that it is required. The definition
of efficientTN , in full, is the following:

3.2. THE SPECIFICATION 31

efficientTN
reqs, cons : P CON

cons ⊆ reqs
cons ∈ disjoint
¬ (∃ cons0 : P CON •

cons ⊂ cons0 ∧
cons0 ⊆ reqs ∧
cons0 ∈ disjoint)

Each of the three operations on the network are described in terms of the state
before (efficientTN) and after (efficientTN ′), and the phone from which it is initiated:

ph? : PHONE

We collect these in the schema ∆TN , but impose the additional constraint that a
connection will never be terminated unless such termination is necessary to preserve
the invariant.

∆TN
efficientTN
efficientTN ′

ph? : PHONE

¬ (∃ cons1 : P CON •
(cons \ cons1) ⊂ (cons \ cons ′) ∧
efficientTN ′[cons1/cons ′])

∆TN requires the set of connections terminated as an effect of the operation (cons \
cons ′) to be minimal with respect to efficientTN ′. That is, it must not be possible
to diminish that set while maintaining the efficientTN ′ invariant.

Each of the three operations is expressed in terms of the ∆TN schema above, and
any additional variables it requires individually.

3.2.1 Call

The Call operation requests a connection between the initiating phone ph? and the
phone dialled?. The request {ph?, dialled?} is added to the set reqs of requests; the
maximality constraint of efficientTN ′ ensures that if the request can be satisfied
immediately, it will be; and the minimality constraint of ∆TN ensures that no other
change will occur in cons.

Call
∆TN
dialled? : PHONE

reqs ′ = reqs ∪ {{ph?, dialled?}}

3.2.2 HangUp

The HangUp operation terminates any connection in which the initiating phone is
engaged; any such connection c is removed from the set of requests (which therefore
forces it to be removed from the set of connections also).

32

HangUp
∆TN

reqs ′ = reqs \ {c : cons | ph? ∈ c}

3.2.3 Engaged

The Engaged operation indicates whether a phone is connected or not:

Status ::= Yes | No

Engaged
∆TN
engaged ! : Status
other ! : PHONE

θTN ′ = θTN
(engaged ! = Yes) ⇒ ({ph?, other !} ∈ cons)
(engaged ! = No) ⇒ ph? 6∈ (

⋃
cons)

3.3 Exercises

Exercise 3.1 ‘A connection is not terminated unless terminating it is necessary to
preserve the invariant’. Justify the formulation of ∆TN by showing that

∀∆TN •
(∀ c : cons • c ∈ reqs ′ ⇒ c ∈ cons ′)

That is, any connection which (a) was active before an operation (∈ cons); and (b)
is still requested after the operation (∈ reqs ′) remains active (∈ cons ′).

Exercise 3.2 Show that it is possible for HangUp to activate a connection. That
is, prove the following:

(∃HangUp • (cons ′ \ cons) 6= {})

Exercise 3.3 Add a variable

avail : P PHONE

to the telephone network state; avail is to be, at any time, the set of phones that are
available for connection (i.e. are in working order). Leave aside for the moment just
what determines the value of avail itself; concentrate instead on what changes must
be made to ensure that only available phones can be used (to initiate an operation)
or engaged.

3.4. SOLUTIONS TO EXERCISES 33

Exercise 3.4 Specify two operations for updating the variable avail . That is, define

AV
avail : P PHONE

and two operations

Break
∆AV
phone? : PHONE

?????

and

Fix
∆AV
phone? : PHONE

?????

where Break makes a phone unavailable, and Fix makes it available again.

Exercise 3.5 Extend the operations Break and Fix (introduced in Exercise 3.4) so
that they operate on the network state efficientTN , but do not change reqs (cons
may have to change). Add to Call , HangUp, and Engaged the constraint that they
do not change avail . Finally, present the entire specification as it now stands.

3.4 Solutions to exercises

Solution 3.1 Since from efficientTN ′ we have cons ′ ⊆ reqs ′, it follows that

(cons \ reqs ′) ⊆ (cons \ cons ′)

But (cons \ reqs ′) = cons \ (reqs ′ ∩ cons), and so

cons \ (reqs ′ ∩ cons) ⊆ cons \ cons ′ (3.1)

Now if for some c it were not true that

(c ∈ cons ∧ c ∈ reqs ′) ⇒ c ∈ cons ′ (3.2)

then we would have both of the following:

1. c 6∈ (cons \ (reqs ′ ∩ cons))

2. c ∈ (cons \ cons ′)

which together would show that the inclusion (3.1) was strict:

cons \ (reqs ′ ∩ cons) ⊂ cons \ cons ′

Letting cons1 be reqs ′∩cons, this contradicts ∆TN , and so we have established (3.2).
2

34

Solution 3.2 We assume that the set PHONES is big enough to contain at least
three distinct elements; let them be a, b, and c. Then

HangUp ∧
reqs = {{a, b}, {a, c}} ∧
cons = {{a, b}} ∧
ph? = a

⇒
reqs ′ = {{a, c}} ∧ cons ′ = {{a, c}}

⇒
(cons ′ \ cons) 6= {} 2

Solution 3.3 First extend the original TN (before efficientTN), specifying that
only available phones can be engaged in a connection.

TN
TN
avail : P PHONE

(
⋃

cons) ⊆ avail

The use of TN within its own definition is not recursive; the sub-schema name TN
refers to its previous definition, and so the above is strictly an extension. We have
redefined TN as follows:

TN
reqs, cons : P CON
avail : P PHONE

cons ⊆ reqs
cons ∈ disjoint
(
⋃

cons) ⊆ avail

The schema efficientTN is textually the same as its previous definition, but now it
includes the new definition of TN.

efficientTN
TN

¬ (∃ cons0 : P CON •
cons ⊂ cons0 ∧ TN [cons0/cons])

∆TN has a similar definition to before, but it includes the new definition of effi-
cientTN and the additional constraint that ph? ∈ avail .

∆TN
efficientTN
efficientTN ′

ph? : PHONE

ph? ∈ avail ∧
¬ (∃ cons1 : P CON •

(cons \ cons1) ⊂ (cons \ cons ′) ∧
efficientTN ′[cons1/cons ′])

3.4. SOLUTIONS TO EXERCISES 35

The definitions of Call, HangUp and Engaged are textually the same as before, but
include the new definition of ∆TN . We repeat them here.

Call
∆TN
dialled? : PHONE

reqs ′ = reqs ∪ {{ph?, dialled?}}

HangUp
∆TN

reqs ′ = reqs \ {c : cons | ph? ∈ c}

Engaged
∆TN
engaged ! : Status
other ! : PHONE

θTN ′ = θTN
(engaged ! = Yes) ⇒ ({ph?, other !} ∈ cons)
(engaged ! = No) ⇒ ph? 6∈ (

⋃
cons)

Solution 3.4 First define the set of available phones:

AV
avail : P PHONE

and the straightforward change of state schema:

∆AV
AV
AV ′

The two operations are then

Break
∆AV
phone? : PHONE

phone? ∈ avail
avail ′ = avail \ {phone?}

and

Fix
∆AV
phone? : PHONE

phone? 6∈ avail
avail ′ = avail ∪ {phone?}

36

Solution 3.5 We redefine ∆AV to include the complete state plus the constraint
that the requests may not change.

∆AV
∆TN

reqs ′ = reqs

The definitions of Break and Fix are textually the same as before, but now include
the complete state. We do not repeat them here (see expansion below).

We redefine Call , HangUp and Engaged explicitly. None of these operations
change the set of available phones.

Call =̂ [Call | avail ′ = avail]
HangUp =̂ [HangUp | avail ′ = avail]
Engaged =̂ [Engaged | avail ′ = avail]

The complete specification follows.

The state The state is as before.

TN
reqs, cons : P CON
avail : P PHONE

cons ⊆ reqs
cons ∈ disjoint
(
⋃

cons) ⊆ avail

The requirement that the set of connections cannot be increased is retained.

efficientTN
TN

¬ (∃ cons0 : P CON •
cons ⊂ cons0 ∧
TN [cons0/cons])

General properties of the operations

∆TN
efficientTN
efficientTN ′

ph? : PHONE

ph? ∈ avail
¬ (∃ cons1 : P CON •

(cons \ cons1) ⊂ (cons \ cons ′) ∧
efficientTN ′[cons1/cons ′])

3.5. SUPPLEMENTARY EXERCISES 37

The operations Request a connection

Call
∆TN
dialled? : PHONE

reqs ′ = reqs ∪ {{ph?, dialled?}}
avail ′ = avail

Terminate a connection

HangUp
∆TN

reqs ′ = reqs \ {c : cons | ph? ∈ c}
avail ′ = avail

Determine telephone status

Engaged
∆TN
engaged ! : Status
other ! : PHONE

θTN ′ = θTN
(engaged ! = Yes) ⇒ ({ph?, other !} ∈ cons)
(engaged ! = No) ⇒ ph? 6∈ (

⋃
cons)

Break a telephone

Break
∆AV
phone? : PHONE

phone? ∈ avail
avail ′ = avail \ {phone?}
reqs ′ = reqs

Fix a telephone

Fix
∆AV
phone? : PHONE

phone? 6∈ avail
avail ′ = avail ∪ {phone?}
reqs ′ = reqs

3.5 Supplementary exercises

Exercise 3.6 Can a telephone call itself? If so, what is the effect of a subsequent
Engaged?

38

Exercise 3.7 If an engaged telephone is suddenly broken, does the connection re-
main active? Is the request lost? What happens when the telephone is fixed?

Exercise 3.8 The system state is capable of describing conference calls, in which
more than two telephones may be connected together, but some of the operations
as now specified are inappropriate for this. Why? Modify those operations so that
conference calls are supported.

Part II

SOFTWARE
ENGINEERING

The software engineering project was the mainstay of the work on specification
within the Programming Research Group. The work dates from 1979–80 when both
Jean-Raymond Abrial and Cliff Jones were visiting the group at the invitation of
Tony Hoare. In that year the seeds were sown for the work that is reported in this
book.

The major part of the work done within the project has involved the application
of techniques for mathematical specification to real systems, and a significant part
of that work has involved industrial collaboration. The software engineering project
spawned the project to study the formalisation of transaction processing reported in
Part IV, and has worked closely with the distributed computing project reported in
Part III.

The specification of the Unix filing system was the first published paper to use the
schema notation as a mechanism for presenting mathematical specifications. It gives
a gentle introduction to both the use of the notation and to the Unix filing system; as
such it provides a more tutorial introduction to specification than the chapters that
follow. The version presented here is slightly changed from that originally published
in the March 1984 issue of the IEEE Transactions on Software Engineering.

The early work on specification included a project with STL on a Computer Aided
Visitor Information And Retrieval (CAVIAR) system. The result of this work was an
unpublished specification and an implementation. At the stage the work was done the
schema notation had not been developed. The CAVIAR specification has since been
reworked using the schema notation and has now been consolidated into Chapter 5.
For the second edition this CAVIAR specification has been reworked yet again to
make use of an experimental modularisation facility for Z.

A collaboration with ICL produced Chapter 6. It describes an existing ICL prod-
uct – the ICL Data Dictionary. The chapter builds a mathematical model of the data
dictionary, which provides the reader with an insight into the logical structure of the
system. The precision of mathematics allows one to deduce properties of the system
that are not made clear in the user manual for the system.

Chapter 7 describes a flexitime system; it provides a good example of the de-
scriptive power of set theory. The specification makes use of a state which is richer
than that necessary for an implementation, and this has as its reward an overall
simplification. This inspiration for this example was provided by a contact in GEC.

Chapter 8 presents a specification of a simple assembler which was originally de-
veloped in response to another ‘specification’ that was in fact closer to an implemen-
tation design. The chapter shows how a specification should be based on fundamental
properties of a proposed system rather than on a particular implementation strategy.

39

40

The design of a two-pass assembler and a justification that this design meets the
specification are also given.

Chapter 4

Specification of the Unix
filing system

Carroll Morgan and Bernard Sufrin

Abstract A specification of the Unix filing system is given using a notation based
on elementary mathematical set theory. The notation used involves very few special
constructs of its own.

The specification is detailed enough to capture the filing system’s behaviour at
the system call level, yet abstracts from issues of data representation, whether within
programs or on the storage medium, and from the description of any algorithms which
might be used to implement the system.

The presentation of the specification is in several stages, each new stage building on
its predecessors; major concepts are introduced separately so that they may be easily
understood. The notation used allows these separate stages to be joined together
to give a complete description of each filing system operation – including its error
conditions.

4.1 Introduction

The Unix [52] operating system is widely known, and its filing system is well un-
derstood. Why, then, do we present a formal specification of it here? It is because
the idea of formalising the specification of computer-based systems has yet to re-
ceive widespread acceptance among computing practitioners, and in our view this is
because very few realistic examples have been published. Publishing a post hoc spec-
ification of aspects of the Unix filestore offered us the possibility of showing how to
use a mathematically based notation to capture important aspects of the behaviour
of a system that is clearly not just a toy.

The use of natural language – without supporting mathematics – has serious limi-
tations as a vehicle for the description of computer systems. As anyone who has ever

Copyright c© 1984 IEEE. Reprinted, with permission, from IEEE Transactions on Software Engi-
neering, Vol. SE-10, No. 2, pp. 128–142.

41

42

used an operating system will confirm, the manuals cannot tell the whole story about
the behaviour of a system. Indeed, almost every programmer who starts to use a new
operating system sets up a number of experiments, by which she attempts to discover
how it ‘really’ behaves. It is a commonplace observation that large computer systems,
operating systems in particular, accumulate around themselves a body of folklore –
necessary knowledge for anybody who wishes to use them effectively – and a number
of ‘gurus’ – people who understand the hidden secrets of the system because they
have read . . . the source code!

In our approach to the description of computer systems we use natural language
together with the formal language of mathematics. And our particular style is sim-
ply a means of presenting the formal part of the description in a way that can be
easily manipulated and understood. The formal descriptions themselves are given
in elementary mathematical set theory, which is convenient for this purpose because
programs are themselves mathematical objects [1, 20]. The difference between a
mathematical specification and a program is only of degree: they are objects drawn
from the same continuum. This uniformity allows, for example, the refinement of
formal specifications into programs to be mathematically verified [33].

By using a mixture of natural language and elementary set theory we have enabled
ourselves to give a description which is comprehensive enough to describe the essential
aspects of the system’s behaviour, but is sufficiently abstract that it will not burden
the reader with the kind of detail that appears in the source code. In particular,
it has allowed us to avoid describing the representation of data on external media
and within programs and to refrain from presenting details of the algorithms that are
used to implement the filestore operations. Thus the specification here might occur
midway along the path from a more abstract but informal specification – a description
such as is given in [52] – to a more concrete one – the source code itself [38]. This
intermediate level of abstraction is one which conveniently captures the behaviour of
the system at the system call level, without being concerned with representational
matters.

At each stage of presentation, the static (invariant) properties of the system are
characterised by naming the observations that can be made of it, attributing a (set
theoretical) type to each observation, and recording the invariant relationships be-
tween these observations as a collection of predicates.

The dynamic behaviour of the system is characterised by giving – for each of the
operations under which the system evolves – the names of the observations that can be
made before the operation, the names of those that can be made after the operation,
and a collection of predicates that relate these two sets of observations. The operations
in question in this case are just the Unix system calls, and the observations we are
interested in may include components of the system state, and the ‘arguments’ and
‘results’ of system calls.

When providing a specification (such as this one) which is a ‘tutorial’ exercise
rather than a reference manual, the concepts must be introduced gradually so as not
to overwhelm the reader with immediate detail. The specification begins with the
definition of a file alone, but ultimately includes channels (file descriptors), file iden-
tifiers (i-numbers), and even the abstract format of a directory file. Error conditions
are treated last of all, so that they do not complicate the description of what usually
happens with the problems of what might happen.

One novel aspect of the specification style is the use of a homogeneous framework
– schemas – to characterise both dynamic and static properties. Schemas supplement
the notation of set theory by providing notations for naming and combining groups

4.2. SCOPE OF THE SPECIFICATION 43

of observations and predicates, and methods of reasoning about the combinations;
this is exactly what is needed to present the specification gradually. Moreover, since
the tutorial style of the specification is based on mathematics, it is necessary when
providing a reference manual only to collect its definitions into one unit – a summary,
in effect – using the laws of combination of schemas.

The value of a specification such as this is that it defines the system in question,
so that its properties may be determined by reasoning rather than by performing
experiments on the system itself – these could be difficult (if the system is complex)
and costly (if it has not yet been built). Since several specifications can be constructed
for one system, each may take a point of view, or adopt a level of abstraction, which
is appropriate to the questions it is required to answer. And if these specifications are
presented within a formal framework, the question of their meaning and consistency
is only a mathematical one, and so can be answered by mathematical means rather
than by armwaving. But of course the real payoff is that when the system is built
and in use, all those painful – and perplexing – visits to the guru can be avoided.

4.2 Scope of the specification

The system described is Unix Level 6. The operations covered include the system
calls

read write create
seek open close
fstat link unlink

and the commands

ls move

Some of the features not treated are

• special files;

• pipes; and

• file access permissions.

Some of the more practical considerations, such as storage device size, are ex-
amined in Appendix 4.5. The treatment of errors covers only a few examples, but
illustrates the technique which would apply to them all.

4.3 The specification

4.3.1 Bytes and files

The ultimate constituent of the filing system is the byte; the set of all bytes is called
BYTE:

BYTE == 0 . . 255

A file is a finite sequence of bytes of any length1 (including the null sequence 〈 〉 of
length 0):

FILE == seqBYTE
1See Appendix 4.5.1.

44

In general, a sequence of X is a partial function from the natural numbers (N) into
X ; for any sequence s and natural number n, s(n) is the nth element of s (if defined).
Thus for any f of type FILE f (1) is the first byte of the file. The function # gives
the length of any sequence; hence #f is the size of the file, and f (#f) is its last byte.

4.3.2 Reading and writing

When a file is read the file itself is not changed; if file ′ is the file’s value after the
operation, and file is its value before, then

file ′ = file

The result of reading a file is a sequence data! of bytes:

data! : seqBYTE

The value of data! is determined by an offset into the file and a length to be read;
both are natural numbers (i.e. non-negative integers):

offset?, length? : N

and in fact

data! = (1 . . length?) C (file after offset?)

The infix operator ‘after’ takes a sequence, in this case file, as its first argument and
an offset as its second argument, and returns the subsequence of file beginning after
the offset. The first length? bytes (if there are that many) are then selected from the
resultant sequence to give the data returned by the read. The operator ‘after’ has
the following definition:

[X]
after : seqX × N → seqX

∀ s : seqX ; offset : N • dom(s after offset) = (1 . . #s − offset) ∧
(∀n : N •

(n + offset) ∈ dom s ⇒
(s after offset)(n) = s(n + offset))

Therefore

(file after offset?)

is a formalisation of

file after the first offset? bytes

This means that the first byte of the file has offset 0.
The domain restriction operator (C) here excludes any element whose index is not

in the set 1 . . length?; data! is therefore

file, after offset?, for no more than length?

4.3. THE SPECIFICATION 45

For example, if

file = 〈X ,A,N ,F ,R,E ,D〉
offset? = 2
length? = 3

then

(file after 2)(n) = file(n + 2)

That is,

file after offset? = 〈N ,F ,R,E ,D〉

and therefore

data! = (1 . . 3) C 〈N ,F ,R,E ,D〉 = 〈N ,F ,R〉

All of these properties may be collected in a schema which defines the reading
operation:

file,file ′ : FILE
offset?, length? : N
data! : seqBYTE

file ′ = file
data! = (1 . . length?) C (file after offset?)

When a schema is used (as it is here) to characterise an operation, its signature

file,file ′ : FILE
offset?, length? : N
data! : seqBYTE

gives names and types to the observations that can be made before and after the
operation. The predicate

file ′ = file
data! = (1 . . length?) C (file after offset?)

relates these observations to one another.
Naming a schema allows it to be referred to within subsequent definitions; the

name is written as part of the enclosing ‘box’.

readFILE
file,file ′ : FILE
offset?, length? : N
data! : seqBYTE

file ′ = file
data! = (1 . . length?) C (file after offset?)

The definition above can be read:

46

The readFILE operation does not change the file. It expects an offset and
length as parameters, and returns as its result the data read. The value
returned is the longest sequence of bytes, of length not greater than that
requested, which begins at the given offset in the file.

To define the writeFILE operation, a similar schema is used; this time, however,
the file is changed.

The byte ZERO is used in the definition of writeFILE ; it is a distinguished element
of BYTE :

ZERO == 0

And zero(k) is a sequence of length k containing only ZERO bytes:

zero : N → seqBYTE

∀n : N • zero(n) = (λ k : 1 . . n • ZERO)

Writing with an offset greater than the file length leaves ZERO bytes between the
previous end of the file and the newly written data.

writeFILE
file,file ′ : FILE
offset? : N
data? : seqBYTE

file ′ = zero(offset?)⊕ file ⊕ (data? shift offset?)

The infix operator ‘shift’ takes a sequence, in this case data? and an offset and shifts
data? by the offset. It has the following definition:

[X]
shift : seqX × N → (N 7→ X)

∀ s : seqX ; offset : N •
dom(s shift offset) = {i : dom s • i + offset} ∧
(∀n : dom(s shift offset) •

(s shift offset)(n) = s(n − offset))

‘⊕’ is the function overriding operator: f ⊕ g behaves like g except where g is unde-
fined, in which case it behaves like f . Thus the value of any byte in the file

zero(offset?)⊕ file ⊕ (data? shift offset?)

is determined first by the written data?, then by the previous contents of the file, and
finally is ZERO otherwise. The length of the new file is

max (#file, offset? + #data?)

Thus

file = 〈X ,A,N ,F ,R,E ,D〉 ∧
offset? = 8 ∧

4.3. THE SPECIFICATION 47

data? = 〈N ,U ,N , I ,B ,A,D〉
⇒

file ′ = 〈t,t,t,t,t,t,t,t〉 ⊕ 〈X ,A,N ,F ,R,E ,D〉 ⊕
(〈N ,U ,N , I ,B ,A,D〉 shift 8)

⇒
file ′ = 〈X ,A,N ,F ,R,E ,D ,t〉 ⊕ (〈N ,U ,N , I ,B ,A,D〉 shift 8)

⇒
file ′ = 〈X ,A,N ,F ,R,E ,D ,t,N ,U ,N , I ,B ,A,D〉

(The byte ZERO is here represented by a ‘t’.)
A consequence of this definition is that writeFILE is possible for all values of file,

offset?, and data? (subject to any limitation on the maximum size of files in general);
formally, this is shown by proving that there is always a value for file ′, consistent
with its type FILE (seqBYTE), such that the following predicate holds:

file ′ = zero(offset?)⊕ file ⊕ (data? shift offset?)

4.3.3 File storage

The file storage system allows files to be stored and retrieved using file identifiers;
the set of all file identifiers is called FID:

[FID]

The storage system is characterised by a single observation: a partial function2 from
FID to FILE .

SS
fstore : FID 7→ FILE

An empty file may be created in the storage system by supplying its identifier as a
parameter to an operation which changes an old storage system, SS , into a new one
which contains the created file, SS ′. SS is equivalent to

fstore : FID 7→ FILE

so SS ′ is equivalent to

fstore ′ : FID 7→ FILE

Thus, the effect of decorating a schema name is to decorate the names of its observa-
tion(s).

The operation that creates an empty file is defined by the schema

createSS
SS
SS ′

fid : FID

fstore ′ = fstore ⊕ {fid 7→ 〈 〉}

2See Appendices 4.5.2 and 4.5.3.

48

The new store fstore ′ is identical to the old except that fid now refers to the empty
file 〈 〉– whether or not it referred to a file previously. Thus creating an existing file
empties it. We do not write ‘fid?’ because later it will be seen that these file identifiers
are in fact not visible to the user.

Destroying a file is defined

destroySS
SS
SS ′

fid : FID

fid ∈ dom fstore
fstore ′ = {fid} −C fstore

Naturally, a file must exist (∈ dom fstore) to be destroyed. The new fstore ′ is identical
to the old except that there is no file referred to by fid :

fid 6∈ dom fstore ′

4.3.4 Reading and writing stored files – framing

Reading a stored file is defined by the following schema:

SS
SS ′

fid : FID
offset?, length? : N
data! : seqBYTE
file,file ′ : FILE

fid ∈ dom fstore
file = fstore(fid)
data! = (1 . . length?) C (file after offset?)
file ′ = file
fstore ′ = fstore ⊕ {fid 7→ file ′}

The file read is that referred to by fid , the data output is from offset? for length?
(as before), and the file is not changed.

This long-winded definition of reading a stored file shows that it is in fact a
combination of the definitions given above for

• reading a file (readFILE); and

• the storage system (SS).

This kind of combination is called framing, because it involves specifying

• which file is read or written; and

• that the other files are unaffected.

4.3. THE SPECIFICATION 49

That is, a frame is supplied within which the operation occurs. The following schema
states this framing combination generally:

ΦSS
SS
SS ′

file,file ′ : FILE
fid : FID

fid ∈ dom fstore
file = fstore(fid)
fstore ′ = fstore ⊕ {fid 7→ file ′}

fid denotes the file affected in fstore – namely (file, file ′) – and no other file is changed.
Φ is conventionally used as the first letter of framing schemas (Φ for frame).

Although the definition given above of reading a stored file could have stated ex-
plicitly that the filestore is not changed – fstore ′ = fstore – this is really a consequence
of the fact that the file itself is not changed. And the framing schema ΦSS makes
it much easier to write such definitions generally – for example, the operation above
could be defined as follows:

readSS
ΦSS
readFILE

The signatures and predicates of the two schemas are combined separately and then
joined to form the new schema. Where the two schemas share a named observation
in their signatures, it appears only once in the new schema. Thus, although file and
file ′ occur in both readFILE and ΦSS , they appear only once in readSS .

Writing a stored file is defined similarly.

writeSS
ΦSS
writeFILE

Its definition may be expanded:

SS
SS ′

fid : FID
offset? : N
data? : seqBYTE
file,file ′ : FILE

fid ∈ dom fstore
file = fstore(fid)
file ′ = zero(offset?)⊕ file ⊕ (data? shift offset?)
fstore ′ = fstore ⊕ {fid 7→ file ′}

As in readSS , file and file ′ appear only once in this combination.

50

4.3.5 Hiding and simplification

In the schema readSS the observations file and file ′ are entirely determined in value
by the other observations of the schema. Unless it is necessary to observe the whole
file involved in a read or write operation, these observations have become inessential
to the specification. Observations such as these are called auxiliary.

Hiding auxiliary observations can allow simplification of the schema in which they
occur. Components are hidden by removing them from the signature of the schema
and by existentially quantifying them in the predicate part. readSS , with file and
file ′ hidden, is written readSS \ (file,file ′) and is in full

SS
SS ′

fid : FID
offset?, length? : N
data! : seqBYTE

(∃file,file ′ : FILE •
fid ∈ dom fstore
file = fstore(fid)
data! = (1 . . length?) C (file after offset?)
file ′ = file
fstore ′ = fstore ⊕ {fid 7→ file ′})

This schema can be simplified using basic predicate calculus:

SS
SS ′

fid : FID
offset?, length? : N
data! : seqBYTE

fid ∈ dom fstore
fstore ′ = fstore
data! = (1 . . length?) C (fstore(fid) after offset?)

Writing may be treated similarly.

4.3.6 Sequential access to files

The read and write operations described so far support random access; in order to
allow easy sequential use of these operations, a channel is defined which remembers
the current position in the file.

CHAN
fid : FID
posn : N

4.3. THE SPECIFICATION 51

A channel has a file identifier fid – which may refer to a file in fstore – and a position
posn within the file. As usual, operations involving the channel take the form of a
predicate relating the observations of

CHAN

to those of

CHAN ′

They have the additional property that the fid of a channel is never changed. The
schema ∆CHAN expresses the general properties of any operation on a channel (∆
for change).

∆CHAN
CHAN
CHAN ′

fid ′ = fid

Sequential reading and writing using channels is easily characterised by combining
the previous definitions.

readCHAN
readSS
∆CHAN

offset? = posn
posn ′ = posn + #data!

writeCHAN
writeSS
∆CHAN

offset? = posn
posn ′ = posn + #data?

In addition, there is an operation seekCHAN which changes only the position.3

seekCHAN
SS
SS ′

∆CHAN
newposn? : N

fstore ′ = fstore
posn ′ = newposn?

The new position is not constrained to be within the file.4

3See Appendix 4.5.4.
4See Appendix 4.5.5.

52

4.3.7 Channel system

A channel storage system may be defined which is analogous to the file storage system;
it allows channels to be stored and retrieved using channel identifiers taken from the
set CID. A channel identifier is a Unix ‘file descriptor’:

[CID]

CS
cstore : CID 7→ CHAN

Operations on the channel system have the general form

∆CS
CS
CS ′

These operations are defined below:

openCS
∆CS
CHAN
cid ! : CID

cid ! 6∈ dom cstore
posn = 0
cstore ′ = cstore ⊕ {cid ! 7→ θCHAN }

openCS creates a new channel and returns a new identifier which refers to it; the new
channel’s position is zero. θCHAN stands for the ‘pair’ with components posn and
fid. In this case the component posn is zero and the component fid is unconstrained
(its value will be determined at a later stage).

closeCS
∆CS
cid? : CID

cid? ∈ dom cstore
cstore ′ = {cid?} −C cstore

closeCS removes a channel from the channel system.

4.3.8 The access system

The storage and channel systems together form the access system.

AS
SS
CS

{chan : ran cstore • chan.fid} ⊆ dom fstore

4.3. THE SPECIFICATION 53

The predicate in the above schema requires that every channel must refer to an
existing file. This property is an invariant of the access system and is preserved by
all operations on it. The schema ∆AS automatically includes the invariant of both
the initial (AS) and final (AS ′) state.

∆AS
AS
AS ′

Reading, writing and seeking in the access subsystem are defined with the assis-
tance of a framing schema.

ΦAS
∆AS
∆CHAN
cid? : CID

cid? ∈ dom cstore
θCHAN = cstore(cid?)
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′}

θCHAN in the predicate part is the channel with components fid and posn as they
appear in ∆CHAN ; θCHAN ′ is similar but with components fid ′ and posn ′.

Reading, writing and seeking in the access system are now defined by combination
of previous definitions and the framing schema ΦAS ; as usual, some auxiliary variables
will be hidden.

The operator ∧ when applied to two schemas is shorthand for writing the two
together; that is,

ΦAS ∧ readCHAN

is just

ΦAS
readCHAN

The definitions are

readAS =̂ (ΦAS ∧ readCHAN) \ (offset?,fid ′, posn ′,file ′)
writeAS =̂ (ΦAS ∧ writeCHAN) \ (offset?,fid ′, posn ′)
seekAS =̂ (ΦAS ∧ seekCHAN) \ (fid ,fid ′, posn, posn ′)

which when expanded and simplified give

54

readAS
∆AS
cid? : CID
length? : N
data! : seqBYTE
CHAN
file : FILE

cid? ∈ dom cstore
θCHAN = cstore(cid?)
file = fstore(fid)
fstore ′ = fstore
(∃CHAN ′ • posn ′ = posn + #data! ∧

fid ′ = fid ∧
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′}) ∧

data! = (1 . . length?) C (file after posn)

and

writeAS
∆AS
cid? : CID
data? : seqBYTE
CHAN
file,file ′ : FILE

cid? ∈ dom cstore
θCHAN = cstore(cid?)
file = fstore(fid)
file ′ = zero(posn)⊕ file ⊕ (data? shift posn)
fstore ′ = fstore ⊕ {fid 7→ file ′}
(∃CHAN ′ • posn ′ = posn + #data? ∧

fid ′ = fid ∧
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′})

and

seekAS
∆AS
cid? : CID
newposn? : N

cid? ∈ dom cstore
fstore ′ = fstore
(∃CHAN ′ • posn ′ = newposn? ∧

fid ′ = (cstore cid?).fid ∧
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′})

In addition to the three operations above, the fstat operation, which returns the
size of the file accessed with a given CID , can be defined by

4.3. THE SPECIFICATION 55

fstat
∆AS
cid? : CID
size! : N

cid? ∈ dom cstore
fstore ′ = fstore
cstore ′ = cstore
size! = #(fstore((cstore cid?).fid))

4.3.9 A file naming system

The naming system associates file names from the set NAME with file identifiers FID;
these file names will normally be chosen by the users of the file system.

NS0
nstore : NAME 7→ FID

To create an association in the naming system, a name and fid are supplied; the
new association overrides any existing association for that name.

createNS
∆NS0
name? : NAME
fid : FID

nstore ′ = nstore ⊕ {name? 7→ fid}

Given a name, its fid may be discovered.

lookupNS
ΞNS0
name? : NAME
fid ′ : FID

name? ∈ domnstore
fid ′ = nstore(name?)

The schema ΞNS0 expresses the observation that the naming system is unaffected;
its definition is

ΞNS0
NS0
NS0′

nstore ′ = nstore

ΞCS and ΞSS are defined similarly.
Finally, given a name?, any association it has may be destroyed (this is the unlink

operation).

56

destroyNS
∆NS0
name? : NAME

name? ∈ domnstore
nstore ′ = {name?} −C nstore

4.3.10 Pathnames and directories

By further revealing file names to be sequences of syllables

[SYL]
NAME == seqSYL

it is possible to provide more structure in the name space as a whole (the name space
is domnstore). The naming system is augmented by a set of directory names dnames:

NS
NS0
dnames : P NAME

front(| dnames ∪ domnstore |) ⊆ dnames

P is the powerset constructor. The fat brackets (||) denote application of the function
(front in this case) to a set of arguments to yield a set of results. That is,

front(| S |) = {s : S | s ∈ dom front • front(s)}
The front of a sequence is obtained by removing its last element; only the empty

sequence (‘root’) has no front . The predicate states that the front of every (file or
directory) name must itself be a directory name (i.e. every file or directory – except
root – must appear in some directory). For example, if domnstore included

/Carroll/Unix/paper
/dev/sanders
/Bernard/IEEE/Unixpaper
/Bernard/Mumble

(where syllables are preceded by /) then dnames would necessarily include

/
/Carroll
/dev
/Bernard
/Carroll/Unix
/Bernard/IEEE

Given a directory name dir?, the operation lsNS reveals its ‘contents’.

lsNS
ΞNS
dir? : NAME
contents! : P SYL

dir? ∈ dnames
contents! = last(| {n : domnstore | n 6= 〈〉 ∧ front n = dir?} |)

4.3. THE SPECIFICATION 57

The last of a sequence is its final element.

4.3.11 Directories are files

An additional constraint on the Unix system is that directories are in fact stored as
files; they can be read by users. That is,

dnames ⊆ domnstore

dirformat is a function that maps a FILE to the directory structure it represents:

dirformat : FILE 7→ (SYL 7→ FID)
RootFid : FID

The mathematical definition of dirformat would be the definition of the format of a
directory file – but such a definition need not be given here. RootFid is the FID of
the root directory 〈 〉. The content of each directory file is determined by the system
in accordance with the following requirement:

dirstored
SS
NS

rannstore ⊆ dom fstore
nstore = (λn : NAME | n 6= 〈〉 ∧ n ∈ domnstore •

(dirformat(fstore(nstore(front n))))(last n))
∪ {〈 〉 7→ RootFid}.

The constraint above may be paraphrased as follows:

The association of names and file identifiers (nstore) is found by tak-
ing for any name (λn : NAME . . .) all of its syllables except the last
(front n); finding the file identifier so referred to (nstore . . .); finding the
contents of that file (fstore . . .); interpreting those contents as a directory
(dirformat . . .); and finally using the last syllable of the original name
(last n) to obtain a file identifier from that directory – unless the original
name is empty, in which case its file identifier is RootFid .

4.3.12 The complete filing system

The complete filing system is described by combining the descriptions of the three
separate systems above: the storage systems SS , the channel system CS , and the
name system NS .

FS
SS
CS
NS
usedfids : P FID

usedfids = rannstore ∪ {chan : ran cstore • chan.fid}
usedfids ⊆ dom fstore

58

The auxiliary observation usedfids is introduced; it is the set of file identifiers in use
at any time, either in the channel store or the name store. The predicate states that
all file identifiers in use must refer to an existing file in the file store; members of
(dom fstore \usedfids) are the fids of files which may be destroyed (since they are not
referred to).

The filing system operations can be specified by combining the definitions of their
effects on each separate subsystem. The createFS operation, for example, makes an
empty file in the storage system, a new channel referring to it in the channel system,
and associates a name with it in the naming system.

createFS0
∆FS
createSS
openCS
createNS

name? ∈ domnstore ⇒ fid = nstore(name?)
name? 6∈ domnstore ⇒ fid 6∈ usedfids

If an existing name is created, the file it refers to is emptied – i.e. it is simply replaced
with an empty file, and its previous contents are lost. If the name does not exist in
the naming system, a new fid is chosen which is not currently in use.

The channel identifier of a channel referring to the new (or newly truncated) file
is returned (cid ! is an observation of openCS).

The definition of createFS above is not sufficient. Remember that the name store
is encoded in the file store as directory files. In the case where a new name is added
to the name store, it also needs to be added to the (encoded) directory in the file
store. We define the following schema, which updates the directory files in the file
store without changing the non-directory files or the name store. It makes use of the
schema dirstored on the final state to ensure the name store is correctly encoded into
the file store.

direncode
∆FS
ΞCS
ΞNS
dirstored ′

∃ dfids : P FID • dfids = nstore(| dnames |) ∧
dfids −C fstore ′ = dfids −C fstore

The only difference between the file store before encoding and the file store after is
the contents of directory files. Before encoding they may not accurately represent the
name store but afterwards they must.

The definition of createFS can now be completed. It is the schema composition (o9)
of createFS0 and direncode. The definition of schema composition is given in Section
4.3.14.

createFS =̂ createFS0 o
9 direncode

open returns the channel identifier of an existing file.

4.3. THE SPECIFICATION 59

openFS
∆FS
ΞSS
openCS
lookupNS

fid = fid ′

The fid ′ returned by lookupNS is equal to the fid supplied to openCS (and both fid ′

and fid are good candidates for hiding).
read and write do not change the name store.

readFS
∆FS
readAS
ΞNS

writeFS
∆FS
writeAS
ΞNS

close removes the association between a channel name and the channel it refers to.

closeFS
∆FS
ΞSS
closeCS
ΞNS

unlink removes a name from the naming system, but it does not destroy the associated
file.

unlinkFS0
∆FS
ΞSS
ΞCS
destroyNS

As with createFS, this operation updates the name store. Hence the encoded version
of the name store in the file store also needs to be updated.

unlinkFS =̂ unlinkFS0 o
9 direncode

Destroy removes a file from the filing system.

destroyFS
∆FS
destroySS
ΞCS
ΞNS

60

But can a file be destroyed while it is in use? The FS ′ invariant requires that

usedfids ′ ⊆ dom fstore ′ (4.1)

and from ΞCS and ΞNS it follows that

usedfids = usedfids ′ (4.2)

and so, from (4.1) and (4.2),

usedfids ⊆ dom fstore ′ (4.3)

But

destroySS ⇒ fid 6∈ dom fstore ′ (4.4)

and (4.3) and (4.4) give

destroySS ⇒ fid 6∈ usedfids (4.5)

That is, a file cannot be destroyed while it is in use.

4.3.13 Honesty of definitions

The constraint on the destroy operation

fid 6∈ usedfids

is not immediately obvious from its definition above. Because the constraint is im-
plicit, the above definition could be said to be dishonest.

An honest definition is one for which the conditions of applicability are explicit.
In general, a schema which describes an operation can be expanded to have the form

operation
STATE
STATE ′

IN ?
OUT !

inv(STATE)
pre(STATE , IN ?)
trans(STATE , IN ?,OUT !,STATE ′)
post(STATE ′,OUT !)
inv(STATE ′)

where P(S) denotes a predicate in which the observations of S may occur free.
STATE , STATE ′, IN ?, and OUT ! are schemas with no predicates – they are just

signatures.
inv is the state invariant, pre and post are the pre- and post-conditions respec-

tively, and trans is the predicate expressing the relationship between the initial state,
inputs, outputs, and final state. The conjunction of the five predicates forms the
definition of the operation, but the definition is said to be honest only if

inv ∧ pre ⇒ (∃OUT !; STATE ′ • trans ∧ post ∧ inv)

4.3. THE SPECIFICATION 61

If the invariant holds, and the input satisfies its precondition, then the operation
should have at least one defined result. Thus, in an honest definition, applicability
can be determined by considering the precondition alone (if all operations preserve
the invariant). This is an honest definition of destroy:

destroyFS
∆FS
destroySS
ΞCS
ΞNS

fid 6∈ usedfids

It is, however, mathematically equivalent to its original definition above.
For any schema describing an operation, a suitably honest precondition can be dis-

covered by hiding the OUT ! and STATE ′ observations, and simplifying the resulting
predicate.

4.3.14 Observation renaming and schema composition

It may be necessary at times to rename the observations of a schema to avoid name
clashes with other schemas. Writing

schema[name2/name1]

denotes the result of systematically substituting name2 for name1 throughout schema
(with suitable renaming of bound variables if necessary). For example:

createNS [newname?/name?] =

∆NS
newname? : NAME
fid : FID

nstore ′ = nstore ⊕ {newname? 7→ fid}

and

lookupNS [oldname?/name?] =

∆NS
oldname? : NAME
fid ′ : FID

oldname? ∈ domnstore
fid ′ = nstore(oldname?)
nstore ′ = nstore

62

The composition of two schemas, written

schema1 o
9 schema2

is intended to capture the effect of ‘schema1 then schema2’. It is formed by

1. Determining all of the dashed observations of schema1 that correspond with
undashed observations of schema2 (name ′ corresponds with name).

2. Renaming each corresponding pair to a single new name

schema1[name ′′/name ′]
schema2[name ′′/name]

3. Combining the schemas, and hiding the new observations

schema1 o
9 schema2 =̂

(schema1[name ′′/name ′] ∧
schema2[name ′′/name]) \ (name ′′).

This operation allows schemas to be combined in a way suggestive of forward func-
tional composition: the final state of schema1 becomes the initial state of schema2.
For example:

linkNS =̂ lookupNS [oldname?/name?]o9
createNS [newname?/name?]

gives in full:

linkNS
∆NS
oldname?,newname? : NAME

oldname? ∈ domnstore
nstore ′ = nstore ⊕ {newname? 7→ nstore(oldname?)}

The hidden observations are nstore and fid . linkNS makes the filename newname?
refer to the same file as does oldname?.

A similar construction defines moveNS :

moveNS =̂ linkNS o
9 destroyNS [oldname?/name?]

That is,

moveNS
∆NS
oldname?,newname? : NAME

oldname? ∈ domnstore
nstore ′ = ({oldname?} −C nstore)⊕ {newname? 7→ nstore(oldname?)}

moveNS renames a file from oldname? to newname?. It is important that the two
occurrences of oldname? – in linkNS and destroyNS [oldname?/name?] – are merged,

4.3. THE SPECIFICATION 63

and so only one file is referred to. However, oldname? appears only once in the
signature of moveNS .

Combining the definitions of linkNS and moveNS above, with ΞSS and ΞCS ,
gives their definitions in the complete file system FS.

linkFS =̂ (∆FS ∧ ΞSS ∧ ΞCS ∧ linkNS) o
9 direncode

moveFS =̂ (∆FS ∧ ΞSS ∧ ΞCS ∧ moveNS) o
9 direncode

Because both these operations update the name store, we need to update the encoded
version of the name store in the file store.

4.3.15 Definition of error conditions

The definitions given so far describe only successful operations. For example, the
schema

lookupNS
ΞNS
name? : NAME
fid ′ : FID

name? ∈ domnstore
fid ′ = nstore(name?)

gives no indication of the result of looking up a name that is not in the name store.
In fact, the definition explicitly states that the name must be there

name? ∈ domnstore.

It is to that extent unrealistic.
To describe unsuccessful as well as successful operations, a schema is introduced

below which includes an error report observation. The following error reports are
used:

REPORT ::= Ok | NoSuchCid | NoSuchName | NoFreeCids

∆FS
FS
FS ′

report ! : REPORT

report ! 6= Ok ⇒ (θFS ′ = θFS)

The predicate states that in the event of an unsuccessful report

report ! 6= Ok

the system’s state is unaltered (θFS ′ = θFS). Successful operations are described by
the schema below:

success
∆FS

report ! = Ok

64

The following schemas define typical failures:

CidErr
∆FS
cid? : CID

cid? 6∈ dom cstore
report ! = NoSuchCid

CidErr describes an attempt to use a non-existent channel identifier. Two other
common errors are

NameErr
∆FS
name? : NAME

name? 6∈ domnstore
report ! = NoSuchName

and

ChanErr
∆FS

dom cstore = CID
report ! = NoFreeCids

NameErr describes an attempt to use a non-existent file name; ChanErr describes
an unsuccessful attempt to obtain a new channel identifier.

These error descriptions should be associated with the operations that can give
rise to them; this is accomplished by schema disjunction:

schema1 ∨ schema2

This is the schema formed by merging the two schemas’ signatures (as for conjunction
∧) and forming the disjunction of their predicate parts (where, in contrast, ∧ forms
their conjunction).

Thus the schemas read and open, for example, can be redefined to include the
error cases:

read =̂ (readFS ∧ success) ∨ CidErr
open =̂ (openFS ∧ success) ∨ NameErr ∨ ChanErr

The other operations may be similarly treated once their error conditions have
been defined.

Figures 4.1 and 4.2 give the expansions of read and open, respectively.

4.4 Summary

The schema approach to the incremental presentation of large system specifications
has been illustrated by using it to describe the Unix filestore. This technique has

4.4. SUMMARY 65

read
FS
FS ′

cid? : CID
length? : N
data! : seqBYTE
report ! : REPORT
CHAN
file : FILE

(report ! = Ok ∧
cid? ∈ dom cstore ∧
θCHAN = cstore(cid?) ∧
file = fstore(fid) ∧
fstore ′ = fstore ∧
(∃CHAN ′ • posn ′ = posn + #data! ∧

fid ′ = fid ∧
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′}) ∧

nstore ′ = nstore ∧
data! = (1 . . length?) C (file after posn))

∨ (report ! = NoSuchCid ∧
cid? 6∈ dom cstore ∧
θFS ′ = θFS)

Figure 4.1: Expansion of read

66

open
FS
FS ′

name? : NAME
cid ! : CID
report ! : REPORT
fid ,fid ′ : FID

(report ! = Ok ∧
name? ∈ domnstore ∧
fid = fid ′ = nstore(name?) ∧
fstore ′ = fstore ∧
(∃CHAN ′ • posn ′ = 0 ∧

fid ′ = fid ∧
cstore ′ = cstore ⊕ {cid ! 7→ θCHAN ′}) ∧

nstore ′ = nstore ∧
cid ! 6∈ dom cstore)

∨ (report ! = NoSuchName ∧
name? 6∈ domnstore ∧
θFS ′ = θFS)

∨ (report ! = NoFreeCids ∧
dom cstore = CID ∧
θFS ′ = θFS)

Figure 4.2: Expansion of open

4.5. APPENDIX: DIFFERENCES FROM UNIX 67

been used elsewhere to present, and reason about, specifications of other large-scale
systems [40, 41, 60, 62]. It has also proved useful in presenting the behaviour of
systems from a variety of points of view, drawing these together by showing how they
are related from an ‘Olympian’ point of view.

However, because of the generality of the underlying theory (set theory), and in
particular because of the unrestricted nature of the predicates which can be written to
characterise operations, there is no a priori guarantee that a system specified in this
style is implementable, nor is there any ‘automatic’ way of checking even its internal
consistency. The best that can be done is to demonstrate a constructive model at
a suitably high level of abstraction. Fortunately, the provision of such a model is
usually the first step to be taken in the development of an implementation.

This specification technique is not yet a development method; it is simply a step
on the way to one. In particular, the usual criteria for deciding on correctness of
representations and of algorithms have yet to be adapted to this style of presentation.

Once suitable mathematical types have been discovered for the observations to
be made of a system (i.e. once suitable mathematical theories have been found and
decided upon), the narrative part of the top-level views of a system is relatively easy
to formulate.

Acknowledgements The use of set theory to specify the behaviour of computer
systems was first explained to us by Jean-Raymond Abrial. This specification has
been developed from the original attempt by Richard Miller. We have benefited from
collaboration with many of our colleagues, especially Ib Sørensen, Steve Schumann,
Tony Hoare, Ian Hayes, Roger Gimson, and Tim Clement. The continuing financial
support of the UK Science and Engineering Research Council is gratefully appreciated.

4.5 Appendix: differences from Unix

4.5.1 File size

There is an upper bound on the size of files; if a file could contain no more than
FileSizeLimit bytes

FileSizeLimit : N1

then FILE would be defined

FILE == {f : seqBYTE | #f ≤ FileSizeLimit}

4.5.2 Directory size

There is an upper bound on the number of files in the storage system (i.e. the number
of ‘inodes’ is limited):

FileNumberLimit : N1

SS
fstore : FID 7→ FILE

#fstore ≤ FileNumberLimit

68

4.5.3 Storage medium capacity

The storage medium used to implement the filing system has finite capacity:

DeviceCapacity : N1

We assume minbytes

minbytes : FILE → N

maps a file into the minimum number of bytes required to represent it in the storage
system.

SS
fstore : FID 7→ FILE

#fstore ≤ FileNumberLimit
DeviceCapacity ≥

∑
[[fid : dom fstore • minbytes(fstore fid)]]

Because in the storage system it is possible to represent a file in more than one
way (small, large, huge – also, totally zero blocks may or may not be allocated), all
that can be said about the system’s capacity is that it must be at least as large as
the minimum required to represent the files within it. Similarly, all that can be said
of the device-full condition is that it cannot occur while the capacity is sufficient for
the maximum required. We assume maxbytes

maxbytes : FILE → N

maps a file into the maximum number of bytes required to represent it in the storage
system. The condition∑

[[fid : dom fstore ′′ • maxbytes(fstore ′′ fid)]] > DeviceCapacity

is necessary for a device full error (where fstore ′′ is the storage system which would
have resulted from the attempted operation).

4.5.4 Seek

seek as defined in Unix has several options, which automatically calculate the de-
sired new offset depending, for example, on the file’s current length. These may be
described separately.

4.5. APPENDIX: DIFFERENCES FROM UNIX 69

seekoffset
SS
CHAN
n? : N
p? : 0 . . 5
offset?,
size : N

size = #(fstore(fid))
p? = 0 ⇒ offset? = n?
p? = 1 ⇒ offset? = posn + n?
p? = 2 ⇒ offset? = size + n?
p? = 3 ⇒ offset? = 512 ∗ n?
p? = 4 ⇒ offset? = posn + 512 ∗ n?
p? = 5 ⇒ offset? = size + 512 ∗ n?

offset? and size are now auxiliary components.
The above schema could be combined with the schema for seek to give the full

definition of the seek system call.

4.5.5 Representation of numbers

The new position of the file is in fact limited by the ability of the computer to represent
numbers.

In this and other cases this limitation could be expressed, for example, as:

n24bit == 0 . . 224 − 1

Such sets would then be used, where appropriate, instead of N:

CHAN
fid : FID
posn : n24bit

70

Chapter 5

CAVIAR: a case study in
specification

Bill Flinn and Ib Holm Sørensen

Abstract This chapter describes the specification of a reasonably complex software
system. Important features of the Z approach which are highlighted in this chapter
include the interleaving of mathematical text with informal prose, the creation of
parameterised specifications, and use of the schema calculus to construct descriptions
of large systems from simpler components.

This presentation of the CAVIAR specification also makes use of an experimental
modularisation facility.

5.1 Introduction

We view a specification as having a twofold purpose: firstly, to give a formal (mathe-
matical) system description which provides a basis from which to construct a design.
Such a mathematical description is essential if we are to prove formally that a design
meets its specification. Secondly, to give an informal statement of the system’s prop-
erties, in order that the specification can be validated against the (usually informal)
statement of requirements. Thus the Z approach is to construct a specification doc-
ument which consists of a judicious mix of informal prose with precise mathematical
statements. The two parts of the document are complementary in that the informal
text can be viewed as commentary for the formal text. It can be consulted to find
out what aspects of the real world are being described and how they relate to the in-
formally stated requirements. The formal text on the other hand provides the precise
definition of the system and hence can be used to resolve any ambiguities present in
the informal text. A beneficial side effect for practitioners writing such documents is

71

72

that their understanding of the system in question is helped greatly by the process of
constructing both the formal and the informal descriptions.

It is often the case that the process of abstraction used to construct a specification
results in structures that are more general than those actually required for the system
being considered. It is part of the Z approach to identify and describe such general
structures. These descriptions can be placed in a specification library. Particular
cases of these general components can then be used later, either as part of the current
system or in subsequent projects.

This specification case study develops a number of general systems which are
subsequently constrained and combined to form the complete system description.

5.2 The case study

The Computer Aided Visitor Information And Retrieval (CAVIAR) system speci-
fication resulted from the analysis of a manual system concerned with the recording
and retrieval of data about arrangements for visitors and meetings at a large indus-
trial site. Standard Telecommunications Laboratories (UK) sponsored the study in
order to investigate the feasibility of converting to a computer-based solution. Of
particular concern were the interrelationships of the stored information, the qual-
ity of the user interface, and the volume of data that needed to be processed. The
customer provided as input to the study an informal requirements document. We
attempt to provide in this chapter an outline of the steps involved in development
of the eventual formal specification. It is important to stress at the outset that we
view the task of constructing such a specification to be an iterative process, involving
several attempts at construction of a model for the system interspersed with frequent
dialogues with the customer to clarify details that are ambiguous or undefined in the
initial requirements document, and frequent redrafting to clarify the structure of the
document.

At an early stage in the analysis it became clear that the CAVIAR system con-
sisted of several largely independent subsystems. Each subsystem records important
relationships within the complete system and these separate subsystems are them-
selves related according to some simple rules. Most of the operations to be provided
in the user interface can be explained as functions which transform one particular
subsystem only, leaving the others invariant. These observations led to the decision
first to define the subsystems in isolation and then to describe the complete system
by combining the definitions of the subsystems. Once this decision had been taken,
it also became clear that each of the individual subsystems, when viewed at an ap-
propriate level of abstraction, was a particular instance of a general structure. From
this vantage point it was natural to specify each of the subsystems by ‘refining’ a
specification which describes the underlying general system.

The process of analysis as presented here begins with an identification of the
sets which appear to be important from the customer’s point of view. Next the
relationships between these sets are investigated and a preliminary classification of
the subsystems follows. The third phase consists of developing an appropriate general
mathematical structure in which to place these subsystems. Various ways of specialis-
ing (restricting) the general structure are then investigated and particular subsystems
are modelled by instantiation. Finally the subsystem models are combined.

5.3. IDENTIFICATION OF THE BASIC SETS 73

5.3 Identification of the basic sets

We now present a brief account of the existing system, emphasising the important con-
cepts in italics. Visitors come to the site to attend meetings and/or consult company
employees. A visitor may require a hotel reservation and/or transport reservation.
Each meeting is also required to take place in a designated conference room, at a
certain time. A meeting may require the use of a dining room for lunch, on a partic-
ular date. Booking a dining room requires lunch information, including the number
of places needed. Each conference room booking requires session information about
resources required for use in the meeting, e.g. viewgraphs, projectors. The main op-
erations required at the user interface can briefly be described as facilities for booking,
changing, and cancelling the use of resources. We list below the sets together with
the names that we shall adopt for referring to them.

Set Name
Meetings M
Visitors V
Conference Rooms CR
Dining Rooms DR
Lunch Information LI
Session Information SI
Hotel Reservation HR
Transport Reservation TR

These form our basic sets:

[M ,V ,CR,DR,LI ,SI ,HR,TR]

The informal interpretation of these sets is straightforward, and for the purpose of
this specification no further detail is necessary. Note that the question of modelling
time remains to be resolved; at this point we simply observe that hotel reservations
are made for particular dates, transport reservations are made for certain times on
particular dates, and conference room bookings are made for sessions on particular
dates. We shall not specify the term session further, apart from noting that a date
is always associated with a session; it could, for example, denote complete mornings
or afternoons, or hourly or half-hourly intervals, depending on the way conference
rooms are allocated.

The notion of time and the relationship between the different units of time used
within the system can be formalised by asserting the existence of three sets as follows:

[Date,Session,Time]

together with two total functions:

date of session : Session → Date
date of time : Time → Date

5.4 The subsystems of CAVIAR

The first approach to a mathematical model stems from the realisation that several
of the sets listed above can be viewed as resources and other sets can be viewed as

74

users of those resources. We can identify the following subsystems of CAVIAR in this
framework (i.e. Resource–User systems). Observe that in different subsystems the
same set may appear in different roles.

System Resources Users
CR M Conference Rooms Meetings
DR M Dining Rooms Meetings
M V Meetings Visitors
HR V Hotel Reservations Visitors
TR V Transport Reservations Visitors

Once we have made this mathematical abstraction it seems worthwhile, for the fol-
lowing reasons, to develop a general theory of such resource–user systems:

1. A specification of such a general system would be more useful as part of a
specification library than a specific instance of such a system. Reusability is
much more likely to be achieved by having generic specifications available that
can be instantiated to provide particular systems.

2. Particular subsystems of the general system can be constructed as special cases
of the general specification in various ways. This will amply repay care and
time spent on the general case. Furthermore, such instantiation may well result
in a more compact implementation.

5.5 Modules

To facilitate the production of a specification library, we add a simple parameterised
module construct to Z. The modularisation feature has been introduced as an exper-
imental extension to Z to help structure the CAVIAR specification, it is not part of
‘standard’ Z. The parameterisation mechanism is similar to that used for parame-
terised schemas in Z. For more details on the module construct see [16].

Modules appear as (sub-)sections of this chapter with titles consisting of ‘Mod-
ule:’ followed by the name of the module, optionally followed by a list of generic set
formal parameters in square brackets. For example, the header of Section 5.6 below
introduces module Resource User with formal parameter sets T, R, and U.

Within a module, a formal parameter set acts like a basic type in a normal Z
specification. The scope of variables and schemas defined within a module is limited
to the module. However, a specification (or another module) may gain access to the
definitions within a module by instantiating the module.

When a module is instantiated, actual parameter sets are specified. For example,
the Resource User module of Section 5.6 can be instantiated with the sets Date, HR,
and V by the declaration

Resource User [Date,HR,V]

All the definitions of the module Resource User are available within the specification
that included the instantiation. However, every occurrence of a formal parameter
within the module definition is replaced by the corresponding actual parameter set
within the instantiation.

When a module is instantiated its definitions may also be decorated to distinguish
definitions with the same name in different modules. This is discussed in Section 5.11.

5.6. MODULE: RESOURCE USER[T, R, U] 75

5.6 Module: Resource User [T, R, U]

We consider a system parameterised over three sets: T, R, U. Informally, T is to
be thought of as a set of time slots, R is a set of resources, and U is a set of users.
We describe a general resource–user system as a function from T to the set of rela-
tions between R and U . Thus we have a rather general framework: for each time
slot t ∈ T , some users are occupying or using some resources. The set T will later
be instantiated with different sets in the various applications. Notice that consider-
ing relations between R and U allows us the possibility of a user occupying several
different resources simultaneously, as is shown informally in Figure 5.1.

'

&

$

%

T

t1
t2
t3
t4...

�

�

�

�

R

r1
r2...

�

�

�

�

U

u1
u2...

�

�

�

�
r1
r2...

�

�

�

�
u1
u2...

�
��
�
�*

��
��
��
��
��
�1

PPPPPPPPPPPq

HH
HHHj

`````   
  

   
  

Figure 5.1: General resource–user system

Formally, the structure we are describing is captured by a function ru of type

T → (R ↔ U )

We shall now incorporate this into a schema definition. This schema contains some
ancillary components in addition to the function ru above which are useful in later
analysis. In Z specifications it is common to introduce such derived components: as
specifiers of software we are neither in the position of a pure mathematician looking for
a particularly sparse set of definitions and axioms with which to define a mathematical
structure, nor are we in the position of an implementor trying to minimise storage.
The component in use, which gives the set of resources in use at any instant, is useful
in contexts where we are not concerned with the user component of the system state.
The relation users, which gives the users occupying resources at any instant, is used
in situations where we do not require the information about resources. We also note
that there may be occasions when we wish to consider the set of inverse relations
generated by ru; we call this function ur .



76

R U
ru : T → (R ↔ U )
in use : T ↔ R
users : T ↔ U
ur : T → (U ↔ R)

∀ t : T •
in use(| {t} |) = dom(ru(t)) ∧
users(| {t} |) = ran(ru(t)) ∧
ur(t) = (ru(t))∼

The initial state of this system is defined by making ru(t) the empty relation for each
t :

R U Init =̂ [R U | ran(ru) = {{}}]

Our first theorem asserts that such an initial state is reasonable and assures us of the
consistency of the definition of R U .

Theorem 5.6.1

` ∃R U • R U Init

The proof of this theorem is straightforward because the components in use, users
and ur are derived from ru and well defined for any value of ru. In particular, if the
range of ru contains only the empty set, then the relations in use and users are empty
and the range of ur contains only the empty set. In the interests of readability we
have not given proofs of theorems stated in this chapter.

We continue by defining the appropriate operations for this structure. The first
step is to identify commonalities. For our purposes, the operations that we wish to
consider on this structure are concerned with making a new booking, i.e. adding
a new pair (r 7→ u) to an existing relation at some time t , cancelling an existing
booking, i.e. removing such an (r 7→ u) pair, or modifying in some other way the
relation that exists at some particular time. In fact we shall be a little more general
and define a class of operations on R U which allows the image of a set of time values
to be altered. This is because we anticipate such operations as booking a conference
room for a meeting which lasts for several time slots. Of course a booking which
involves only a single time slot is a special case.

Thus we may summarise the common part of all the operations as follows. Their
description involves: a state before, R U , which introduces ru, in use, users and ur ;
a state after, R U ′, which introduces ru ′, in use ′, users ′, and ur ′; a set of time values,
t?, which denotes an input. The operations always leave the function ru unchanged
except for times in t?. Formally this is captured by the following:

∆R U
R U
R U ′

t? : P T

t?−C ru ′ = t?−C ru

We now have a successful booking operation defined as follows:



5.6. MODULE: RESOURCE USER[T, R, U] 77

R U Book
∆R U
r? : R
u? : U

∀ t : t? •
(r? 7→ u?) 6∈ ru(t) ∧
ru ′(t) = ru(t) ∪ {r? 7→ u?}

Thus R U Book inherits all the properties of ∆R U . Furthermore, it takes two
additional (input) parameters r? : R and u? : U , and is constrained by a predicate
which imposes a requirement on the input parameters and also further relates the
before and after states.

Notice that we are making the predicate

∀ t : t? • (r? 7→ u?) 6∈ ru(t)

a precondition for a successful booking. In fact, we can show that this condition is
sufficient for performing a successful booking; that is, if we are in a valid system state
with the required input parameters of the correct type available and if furthermore
the above condition holds, then there exists a resulting valid system state that is
related to the starting state according to the R U Book schema. Formally, this is
the content of the following result.

Theorem 5.6.2

[R U ; t? : P T ; r? : R; u? : U | ∀ t : t? • (r? 7→ u?) 6∈ ru(t)]
`
∃R U ′ • R U Book

A successful cancellation operation may be defined as follows:

R U Cancel
∆R U
r? : R
u? : U

∀ t : t? •
(r? 7→ u?) ∈ ru(t) ∧
ru ′(t) = ru(t) \ {r? 7→ u?}

The precondition for successful cancellation is that the pair (r? 7→ u?) is related by
ru(t) for all time values t in t?, i.e. the following theorem holds.

Theorem 5.6.3

[R U ; t? : P T ; r? : R; u? : U | ∀ t : t? • (r? 7→ u?) ∈ ru(t)]
`
∃R U ′ • R U Cancel

So far we have only specified successful operations; thus these descriptions are in-
complete. We could at this stage define robust operations by introducing appropriate



78

error recovery machinery. In the interests of simplicity we shall not give a general
treatment of errors; however, we shall indicate in Section 5.11.2 how the descriptions
of the operations at the user interface may be completed.

We shall define two further operations on this structure. The first involves deleting
a resource and all use of that resource at a particular set of times. This is an operation
to be treated with caution: see Theorem 5.6.7 below.

R U Del Res
∆R U
r? : R

∀ t : t? •
t in use r? ∧
ru ′(t) = {r?} −C ru(t)

Informally, this operation may be described as follows. Consider, in turn, each element
t in t? and the corresponding relation ru(t). All elements (r? 7→ u) are to be removed
from ru(t).

Theorem 5.6.4

[R U ; t? : P T ; r? : R | ∀ t : t? • t in use r?]
`
∃R U ′ • R U Del Res

Corresponding to the deletion of a resource there is an operation which, given a user
value u?, deletes all pairs (r 7→ u?) from the relations associated with time values in
t?. This is defined as follows:

R U Del User
∆R U
u? : U

∀ t : t? •
t users u? ∧
ru ′(t) = ru(t)−B {u?}

Theorem 5.6.5

[R U ; t? : P T ; u? : U | ∀ t : t? • t users u?]
`
∃R U ′ • R U Del User

So far we have listed theorems that a specifier is obliged to prove, namely the result
that the initial state satisfies the required definition (and therefore that the specifica-
tion of the state is consistent), and in addition the theorems that explicitly give the
preconditions for each operation. For the specifications that we shall develop from
now on such theorems have been omitted in the interests of brevity.

In addition to these obligatory results, there are other ‘optional’ theorems that
are satisfied by the specification, and which often give insight into the structure being
developed. Two such results for our system follow.



5.7. SPECIALISATIONS OF THE RESOURCE–USER SYSTEM 79

Theorem 5.6.6

R U Book o
9 R U Cancel ` ru ′ = ru

Informally, this theorem states that if we make a booking and follow it immediately
by a cancellation using the same input parameters, then the state of the system does
not change.

Theorem 5.6.7

R U Del Res
`
in use ′ = in use \ {t : t? • t 7→ r?} ∧
users ′ = users \ {t : t?; u : U | (ur t)(| {u} |) = {r?}}

This theorem makes precise the informal comment made earlier about the need for
caution with the R U Del Res operation. It shows that, in addition to modifying the
in use relation, the operation may also affect the users relation for times in t?. For t
in t?, an element t 7→ u is removed from users exactly when the user u is using only
the resource r? at time t . There is a similar result concerning the R U Del User
operation.

5.7 Specialisations of the resource–user system

We shall now specialise the general resource–user system into particular classes of the
system. These specialisations are motivated by the observation that for some of the
instances listed earlier, a resource may at any given time be related to only one user,
or a user may occupy only one resource, or both.

5.7.1 Module: Exclusive Resource[T, R, U ]

The first case we define is the class where each resource may be utilised by at most one
user, but each user may occupy several resources. This module is built on top of mod-
ule Resource User and like Resource User is parameterised with the sets T, R and U.
We instantiate Resource User with the parameter sets [T ,R,U ] of Exclusive Resource
passed on:

Resource User [T ,R,U ]

All the definitions within Resource User are now available within module
Exclusive Resource.

We denote the state of this system by R�U and define it formally by

R�U =̂ [R U | ran(ru) ⊆ R 7→ U ]

This constrains the resource–user relation to be a function, i.e. each resource is utilised
by at most one user. The symbol ‘� ’ is just a character in the name R�U ; it has
been chosen to emphasise that, for exclusive resources, the resource–user relations are
functions.

The initial state of this system is given by the same condition as for R U Init ;
thus we have

R�U Init =̂ R�U ∧ R U Init



80

All operations are described in terms of the following change of state schema:

∆R�U =̂ ∆R U ∧ R�U ∧ R�U ′

ΞR�U =̂ [∆R�U | θR�U ′ = θR�U ]

The operations on this system may be defined as special cases of the general operations
for R U . We first consider the booking operation:

R�U Book =̂ ∆R�U ∧ [R U Book | ∀ t : t? • ¬ (t in use r?)]

The qualifying predicate is included to indicate that there is a further precondition for
booking a resource in a R�U system. We now have two parts to the precondition for
this operation; firstly this qualifying predicate, and secondly the precondition arising
from R U Book . In fact the former implies the latter, as is easily checked.

The cancellation operation is defined as follows:

R�U Cancel =̂ ∆R�U ∧ R U Cancel

On considering the two deletion operations defined for R U, we observe that
R U Del Res is almost equivalent to a cancellation in our present context, because
the resource is associated with only one user. However, it is convenient to retain
the operation R U Del Res because it does not require the user as an input: it
determines the user from the resource.

R�U Del Res =̂ ∆R�U ∧ R U Del Res
R�U Del User =̂ ∆R�U ∧ R U Del User

5.7.2 Module: Sole Resource[T, R, U ]

The second case we define is the class where each user may occupy at most one
resource but resources may be shared amongst users. This system is also built from
the general resource–user system:

Resource User [T ,R,U ]

We denote the state of this system by R�U and define it formally by

R�U =̂ [R U | ran(ur) ⊆ U 7→ R]

The initial state of this system is given by the predicate for R U Init :

R�U Init =̂ R�U ∧ R U Init

The operations are described in terms of the following schema:

∆R�U =̂ ∆R U ∧ R�U ∧ R�U ′

ΞR�U =̂ [∆R�U | θR�U ′ = θR�U ]

We now define the booking operation for the system:

R�U Book =̂ ∆R�U ∧ [R U Book | ∀ t : t? • ¬ (t users u?)]

As before, a qualifying predicate is included and again the constraint given here
implies the earlier precondition for the general R U Book operation.



5.8. CLASSIFICATION AND INSTANTIATION 81

The cancellation operation is defined as follows:

R�U Cancel =̂ ∆R�U ∧ R U Cancel

On considering the two deletion operations defined for R U , we observe that this
time R U Del User is almost equivalent to a cancellation in our present context,
because a user may be associated with only one resource. As before, we retain it as
a separate operation because it does not require the resource as input:

R�U Del Res =̂ ∆R�U ∧ R U Del Res
R�U Del User =̂ ∆R�U ∧ R U Del User

5.7.3 Module: Sole Exclusive Resource[T, R, U ]

The third and last specialisation we define shares all of the properties of the systems
defined in the preceding two sections. We instantiate the previous two modules and
use their definitions to build the sole exclusive resource module:

Exclusive Resource[T ,R,U ]
Sole Resource[T ,R,U ]

The state of this system is therefore defined as the conjunction of the two states
above. In this system each user may occupy at most one resource and each resource
may be occupied by at most one user. Formally we have

R≡U =̂ R�U ∧ R�U

The initial state of this system is defined by

R≡U Init =̂ R≡U ∧ R U Init

The operations of this system are given by the conjunction of the operations
defined for each of the two earlier systems. For this system we require only the
booking and cancellation operations.

R≡U Book =̂ R�U Book ∧ R�U Book
R≡U Cancel =̂ R�U Cancel ∧ R�U Cancel

5.7.4 The specification library

We have now constructed four specifications which might be considered to form the
nucleus of a specification library for resource–user systems. We may summarise the
relationships between the four classes of system schematically in Figure 5.2.

5.8 Classification and instantiation

5.8.1 Some laws for CAVIAR

In this section, in order to illustrate the clarification process that took place during
requirements analysis, we list some observations about the CAVIAR system which
emerged during dialogue with the customer. We formalise the important constraints
as laws which need to be taken into account in the development that follows:



82

R U

R≡U

R�U R�U

6

@@I ���

��� @@I

Most general

Most constrained

Figure 5.2: Relationships between resource–user systems.

1. At any time a conference room is associated with only one meeting.

2. At any time a meeting may be associated with more than one conference room.

Law 1 is reasonably obvious: it would be difficult to hold more than one meeting in
a given room. Law 2 is not obvious: it was unclear from the informal description
whether or not a meeting could occupy more than one room. In fact the customer
believed initially that a meeting could only take up one room, but a counter-example
was found amongst the supporting documentation.

3. At any time a meeting is associated with only one dining room.

4. At any time participants from several meetings can occupy the same dining
room.

These laws followed from the informal information provided that all visitors in a par-
ticular meeting would go to lunch in the same dining room. It was further established
that all seats in a dining room were treated as indistinguishable, so further meetings
could be accommodated if enough seats were available. Further clarification was nec-
essary regarding lunch times: it transpired that there were ‘early’ and ‘late’ lunches;
however, this was handled by ‘doubling up’ each dining room. For example, a booking
would be made for ‘DR 1, early’ and this was a different dining room from ‘DR 1,
late’.

5. At any time a visitor is associated with only one meeting.

6. At any time a meeting may involve several visitors.

Law 5 had to be checked out with the customer.

7. At any time a hotel room is associated with only one visitor and vice versa.

8. At any time a transport reservation is associated with only one visitor and vice
versa.

Law 7 was natural, but law 8 was less so. It was established that even if the transport
department decided to use a minibus, a separate transport reservation would be issued
to each visitor.



5.8. CLASSIFICATION AND INSTANTIATION 83

5.8.2 Matching systems with models

In this section we first consider each CAVIAR subsystem in turn and match it to
the appropriate model. In fact we have enough structure available to define two
subsystems directly and we do this in the remainder of this section.

1. We first consider the conference room/meeting system CR M .

From laws 1 and 2 we see that CR M is an instance of the R�U subsystem.

2. The dining room/meeting subsystem DR M .

Applying laws 3 and 4 we find that DR M is an instance of R�U .

However, this system does not contain any information about numbers of seats
or the lunch details, so we will need to extend this system later.

3. The meeting/visitor subsystem M V .

From laws 5 and 6 M V is an instance of R�U .

However, we have not documented the fact that meetings have to be created
before visitors can be attached to them; this will also be done later.

4. The hotel reservation/visitor subsystem HR V , and the transport reserva-
tion/visitor subsystem TR V , both have the property that each resource is
occupied by only one user and vice versa. Therefore both these systems are
instances of R≡U .

In fact this model is sufficient to define HR V and TR V completely, by in-
stantiation, as we now show.

5.8.3 Module: Hotel Reservation

The hotel reservation system is an instance of a sole, exclusive resource allocator for
booking hotel rooms (HR) for visitors (V) in time units of days (Date). The hotel
reservation module is not itself parameterised, but instantiates the parameterised
module for sole, exclusive resources with the sets Date, HR, and V introduced in
Section 5.3:

Sole Exclusive Resource[Date,HR,V ]

This instantiation provides us with all the definitions made in the that module. How-
ever, the sets T , R, and U used in the definitions there have been replaced by Date,
HR, and V , respectively, in the above instantiation. Instantiating the parameters
once on the inclusion of the module, rather than having the definitions parametrised
individually, guarantees that its definitions are instantiated consistently.

The state of this system is an instance of the R≡U schema:

Hotel State =̂ R≡U

Here is an expansion of Hotel State in which each occurrence of the parameterised
sets is instantiated accordingly.



84

Hotel State
ru : Date → (HR ↔ V )
in use : Date ↔ HR
users : Date ↔ V
ur : Date → (V ↔ HR)

ran(ru) ⊆ HR 7→ V ∧
ran(ur) ⊆ V 7→ HR ∧
(∀ t : Date •

in use(| {t} |) = dom(ru(t)) ∧
users(| {t} |) = ran(ru(t)) ∧
ur(t) = (ru(t))∼)

The initial state of the hotel reservation subsystem is given by

Hotel Init =̂ R≡U Init

and the operations are given by

Book Hotel Room 0 =̂ R≡U Book
Cancel Hotel Room 0 =̂ R≡U Cancel

5.8.4 Module: Transport Reservation

This subsystem is essentially the same as the HR V subsystem except for the param-
eters. The instances of the parameters are denoted respectively Time, TR, and V ,
where once again the sets TR and V are as in Section 5.3. We shall not specify the
set Time further, except to repeat that each time is associated with a unique Date
(see Section 5.3):

Sole Exclusive Resource[Time,TR,V ]

The state of the transport reservation subsystem includes component users D,
which is similar to users except that it gives the users for a particular date rather
than a time. As every time is associated with a unique date this component is easily
derived from users.

Transport State
R≡U
users D : Date ↔ V

users D = date of time∼ o
9 users

The initial state is given by

Transport Init =̂ Transport State ∧ R≡U Init

and operations given by

Book Transport 0 =̂ ∆Transport State ∧ R≡U Book
Cancel Transport 0 =̂ ∆Transport State ∧ R≡U Cancel



5.9. THE MEETING ATTENDANCE SUBSYSTEM 85

5.9 The meeting attendance subsystem

We now turn our attention to what is necessary in order to complete a model for
the meeting/visitor (M V ) subsystem. Booking and cancelling operations have been
defined already but so far we have not taken account of the fact that before bookings
can be made the meeting itself has to have been ‘created’. The question of exactly
which objects are ‘currently defined’ at any particular time is important because in
several cases only those objects known to the system (i.e. those objects that have
been created but not yet destroyed) can book resources, etc.

5.9.1 Module: Resource Pool [T, X ]

We can model this situation with a simple structure, which we term a resource pool.
This system is parameterised over the set T and an arbitrary set X . There are only
two operations to be defined; namely those that add an object to, and delete an object
from, the pool, over a specified time period. Formally we have:

Pool
exists : T ↔ X

with initial state given by

Pool Init =̂ [Pool | exists = {}]

For later use we define

∆Pool =̂ Pool ∧ Pool ′

and

ΞPool =̂ [∆Pool | θPool ′ = θPool ]

The operations to add and delete objects follow:

Create
∆Pool
t? : P T
x? : X

exists ′ = exists ∪ {t : t? • t 7→ x?}

Destroy
∆Pool
t? : P T
x? : X

exists ′ = exists \ {t : t? • t 7→ x?}

We could have included in the Create operation the precondition that the object
x? must not already exist for any of the times in t?. However, we make a deliberate
decision here to omit this – having in mind the situation where an object may already
exist for some of the times in t? and its existence needs to be extended to all of t?.
A similar remark applies to the Destroy operation.



86

5.9.2 Module: Meeting Visitor

To construct the model for the M V system we combine the resource pool and sole
resource structures (with the parameter sets as shown):

Sole Resource[Session,M ,V ]
Resource Pool [Session,M ]

The state of the meeting/visitor subsystem is a combination of an instance of a sole
resource state and a resource pool state. We add two additional components users D
and exists D, which are similar to users and exists except that they are based on
dates rather than sessions.

Meeting State
R�U
Pool
users D : Date ↔ V
exists D : Date ↔ M

in use ⊆ exists
users D = date of session∼ o

9 users
exists D = date of session∼ o

9 exists

The first predicate ensures that visitors can only attend existing meetings.
The initial state is given by

Meeting Init =̂ Meeting State ∧ R�U Init ∧ Pool Init

We define the operations on State in terms of

∆Meeting State =̂ Meeting State ∧ Meeting State ′

The first operation is concerned with adding a visitor to a meeting:

Add Visitor to Meeting 0 =̂
∆Meeting State ∧ ΞPool ∧ R�U Book

When an operation is ‘promoted’ in this way, its new precondition is determined as
follows: the ‘old’ precondition (i.e. that arising from its definition) must be conjoined
with a further predicate which arises from the new invariant of the larger state. Here,
for example, the precondition for the earlier booking operation is given in Section
5.7.2, namely

∀ t : t? • ¬ (t users u?)

and this must be conjoined with

∀ t : t? • t exists r?

This second predicate is a consequence of the state invariant, which requires all re-
sources that are in use to exist.

Thus the complete precondition for the Add Visitor to Meeting operation is given
by

∀ t : t? • ¬ (t users u?) ∧ t exists r?



5.10. THE MEETING RESOURCE SUBSYSTEMS 87

which states that the visitor (u?) is not already attending a meeting at that time and
that the meeting he is going to attend actually exists.

The second operation removes a visitor from a meeting:

Remove Visitor from Meeting 0 =̂
∆Meeting State ∧ ΞPool ∧ R�U Cancel

It is easy to check that the precondition for this operation is simply inherited from
the initial R U Cancel operation, namely

∀ t : t? • (r? 7→ u?) ∈ ru(t)

We now define the operations that create and cancel meetings as follows:

Create Meeting 0 =̂ ∆Meeting State ∧ ΞR�U ∧ Create

For the creation there is no precondition.

Cancel Meeting 0
∆Meeting State
R�U Del Res
Destroy [r?/x?]

We identify the resource being deleted (r?) with the pool entry being destroyed (x?)
by renaming x? to r? within the inclusion of Destroy in the cancel meeting operation.

The precondition for cancelling a meeting arises from the R U Del Res operation,
i.e. that

∀ t : t? • t in use r?

5.10 The meeting resource subsystems

We are left with the task of defining the systems CR M and DR M . We observe that
both of these have further information associated with the resource–user relationship;
so in order to capture this facet in our model, we introduce the concept of a diary
system.

5.10.1 Module: Diary System [T, X, IX ]

The diary is required to record information over time, T , about some elements of a
set, X . The associated information is from the set IX . The function recording the
information is named info. We also define a derived function info 1, which is used to
simplify later predicates. A relation recorded is defined to specify elements of X for
which information is recorded.

Diary
info : T → (X 7→ IX )
info 1 : (T ×X ) 7→ IX
recorded : T ↔ X

∀ t : T ; x : X ; i : IX •
(t , x ) 7→ i ∈ info 1 ⇔ x 7→ i ∈ info(t) ∧
recorded = dom(info 1)



88

The initial state is given by

Diary Init =̂ [Diary | ran(info) = {{}}]

The two operations to be defined both involve a change over a particular time
period. Note that we are motivated to make this definition in order to maintain
compatibility with existing systems. Formally we define the following:

∆Diary
Diary
Diary ′

t? : P T

t?−C info′ = t?−C info

Add
∆Diary
x? : X
i? : IX

∀ t : t? •
¬ (t recorded x?) ∧
info′(t) = info(t) ∪ {x? 7→ i?}

The complementary erasure operation should remove one element (and the informa-
tion associated with it) from info(t). However, we note that this is a special case of
the following more powerful operation:

Erase
∆Diary
x? : T ↔ X

t? = dom(x?) ∧
x? ⊆ recorded ∧
info 1′ = x?−C info 1

5.10.2 Module: Conference Room Booking

We are now in a position to specify fully the conference room booking subsystem, by
instantiation, as follows:

Exclusive Resource[Session,CR,M ]
Diary System[Session,CR,SI ]

The state includes derived components in use D and users D similar to those intro-
duced earlier.



5.10. THE MEETING RESOURCE SUBSYSTEMS 89

Conference State
R�U
Diary
in use D : Date ↔ CR
users D : Date ↔ M

in use = recorded
in use D = date of session∼ o

9 in use
users D = date of session∼ o

9 users

The initial state is given by

Conference Init =̂ Conference State ∧ R�U Init ∧ Diary Init

It would be more correct to regard the session information SI as being related to a
meeting rather than a conference room. The reason for associating SI with conference
rooms is that it contains information that is issued to the department supplying
equipment for meetings, and they are concerned with the venue rather than what is
to take place there.

The operations use the following state change schema:

∆Conference State =̂ Conference State ∧ Conference State ′

The operations that we require for conference room booking are given below. Infor-
mation is recorded about each resource when it is booked, and must be erased when
a cancellation takes place.

Book Conf Room 0
∆Conference State
R�U Book
Add [r?/x?]

Information is added to the diary for the conference room. Hence, the input to Add ,
x?, is renamed to be the same as the input to the resource booking operation, r?.

Cancel Conf Rooms 0
∆Conference State
R�U Del User
Erase

x? = {t : t?; r : CR | u? 7→ r ∈ (ur t)}

The cancellation operation here deletes all conference rooms associated with a par-
ticular meeting over the specified time period. This is the operation which is most
compatible with the Cancel Meeting operation defined for M V . However, if re-
quired, we could also define the operation that cancels just one conference room and
meeting pairing.

The input x? to Cancel Conf Rooms 0 is auxiliary in the sense that it is deter-
mined from t? and the state, so we hide it:

Cancel Conf Rooms 1 =̂ Cancel Conf Rooms 0 \ (x?)



90

5.10.3 Module: Dining Room Booking

The final resource subsystem that we need to consider is DR M . A meeting has a
sole dining room allocated to it for a given date, but multiple meetings may share a
common dining room. Hence, we use an instance of module Sole Resource to keep
track of dining room bookings:

Sole Resource[Date,DR,M ]

In addition, luncheon information is recorded in a diary for each meeting:

Diary System[Date,M ,LI ]

The analysis so far does not take account of the fact that dining rooms have a finite
capacity, so we need to extend our model. We suppose that we have been given a bag

max cap : bag DR

that records the maximum capacity of each dining room and we record the number
of seats in each dining room which have been reserved already. (See Appendix A.11
for more details about operations on bags.)

The DR M system is defined formally as follows:

Dining State
R�U
Diary
rsvd : Date → (bag DR)

users = recorded ∧
(∀ t : Date • rsvd(t)vmax cap ∧

(∀ r : DR • (t in use r) ⇒ (rsvd t) ] r 6= 0))

Observe that in this case information is associated with each user, and therefore the
diary system takes M as its main parameter. Dining rooms that are in use have
a number of seats reserved, and this number has to be within the dining room’s
capacity: the dining seats in use at a particular time t , rsvd(t), must be a sub-bag
of the maximum capacity of the dining rooms, max cap. If a dining room r is in use
at a particular time t , then it should have some seats reserved.

The initial state of the dining room booking subsystem is given by

Dining Init =̂ Dining State ∧ R�U Init ∧ Diary Init

The two operations that we require for this structure are booking a (number of seats
in a) dining room and cancelling a lunch booking for a particular meeting. In normal
circumstances, a resource (dining room) will not be subject to being taken out of
service (although clearly this occurrence is easy to model if required).

Both of these operations leave rsvd unchanged for time values outside the period
in question; we make this part of the operation invariant.



5.10. THE MEETING RESOURCE SUBSYSTEMS 91

∆Dining State
Dining State
Dining State ′

∆R�U
∆Diary
amount? : Date 7→ N1

dom(amount?) = t? ∧
t?−C rsvd ′ = t?−C rsvd

To book a dining room there should be sufficient capacity at all the times requested.
The requested number of places is reserved for the each of the dates. (B ] C is the
bag in which the frequency of each element is the sum of its frequencies in B and C .)
Luncheon information is added to the diary for the meeting.

Book Dining Room 0
∆Dining State
R�U Book
Add [u?/x?]

(∀ t : t? •
rsvd(t) ] r? + amount?(t) ≤ max cap ] r? ∧
rsvd ′(t) = rsvd(t) ] {r? 7→ amount?(t)})

All the dining rooms for a meeting can be cancelled by the following operation. The
dining room, dr , in use at a given time by the meeting is uniquely determined.

Cancel Dining Room 0
∆Dining State
R�U Del User
Erase

x? = {t : t? • t 7→ u?} ∧
(∀ t : t? •

let dr == ur(t)(u?) •
rsvd(t) ] dr ≥ amount?(t) ∧
rsvd ′(t) = rsvd(t)Ø{dr 7→ amount?(t)})

The input x? is auxiliary in the above definition, so we hide it:

Cancel Dining Room 1 =̂ Cancel Dining Room 0 \ (x?)

5.10.4 Module: Visitor Pool

From the informal requirements we find that visitors must be registered before they
are allowed to attend meetings or have resources booked on their behalf. This re-
quirement is easily met by introducing a visitor Pool structure with actual parameters
Date and V :

Resource Pool [Date,V ]

Visitor State =̂ Pool



92

The initial state given by

Visitor Init =̂ Pool Init

The operations that we require for this system are simply those of creation and
destruction of visitors. Formally we have

Create Visitor 0 =̂ Create
Destroy Visitor 0 =̂ Destroy

5.10.5 The construction process

In this section we summarise the constructions we have used to build the individual
CAVIAR components. In Sections 5.9 and 5.10 we added resource pool and diary
components to our basic library of Section 5.7. We now have a library that consists
of the six components R U , R�U , R�U , R≡U , Resource Pool and Diary System.
We indicate in Figure 5.3 how each subsystem has been constructed using components
from the library.

R U

R≡U

R�U R�U

@
@
�
�

�
�
@
@

Diary Pool

DR M
�
�
�
�
�
��

��
�
��
�
��
�
��
�

CR M
B
B
B
B
B
BB















TR V
�
�

HR V
@
@

M V
�
�
�
�
�
��

J
J
J
J
J
JJ

V P
B
B
B
B
B
BB

Figure 5.3: Construction from components

5.11 Module: CAVIAR

We have now achieved our first goal of specifying all constituent subsystems of
CAVIAR. As many of the component subsystems are built from the same library
modules, we need to distinguish different uses of the same names by decorating the
subsystems as we include them. The decoration consists of an abbreviation indicating
the subsystem followed by ‘::’.

HR V ::Hotel Reservation
TR V ::Transport Reservation
M V ::Meeting Visitor
CR M ::Conference Room Booking
DR M ::Dining Room Booking
V P ::Visitor Pool



5.11. MODULE: CAVIAR 93

The decoration is applied to all names defined in a subsystem, and in particular when
applied to schemas acts as a decoration of the components of the schema. This is
necessary to distinguish the same component name occurring in two logically differents
ways in two different schemas that are to be combined.

We have yet to combine the subsystems into a coherent whole. This is now a
comparatively easy task, once we have observed a few extra constraints.

5.11.1 Combining subsystems to form the state

We define the visitor part of the system as follows:

V SYS
V P ::Visitor State
HR V ::Hotel State
TR V ::Transport State

HR V ::users ⊆ V P ::exists ∧
TR V ::users D ⊆ V P ::exists

The invariant states that visitors that have hotel or transport reservations must be
known.

The meeting part of the system is defined by M SYS .

M SYS
M V ::Meeting State
CR M ::Conference State
DR M ::Dining State

CR M ::users ⊆ M V ::exists ∧
DR M ::users ⊆ M V ::exists D

The invariant states that meetings which are occupying conference rooms or dining
rooms must be known to the system at that time.

These two subsystems are now combined to form the CAVIAR system.

CAVIAR
V SYS
M SYS

M V ::users D ⊆ V P ::exists

Informally, the invariant states that all visitors who are attending meetings must be
known to the system. The initial state of the system is given by the conjunction of
all the initialisations:

CAVIAR Init =̂ HR V ::Hotel Init ∧ TR V ::Transport Init ∧
M V ::Meeting Init ∧ CR M ::Conference Init ∧
DR M ::Dining Init ∧ V P ::Visitor Init

It is easy to verify that this conjunction satisfies the invariant.



94

The operations on CAVIAR may be divided naturally into three groups: those
involving meetings only; those involving visitors only; and a general visitor removal
operation. They all involve the complete state of CAVIAR:

∆CAVIAR =̂ CAVIAR ∧ CAVIAR′

5.11.2 Operations that involve meetings only

These operations are concerned with M SYS only and leave V SYS unchanged. We
denote this by

ΞV SYS =̂ [V SYS ; V SYS ′ | θV SYS = θV SYS ′]
M OP =̂ ∆CAVIAR ∧ ΞV SYS

Similar definitions for CR M ::ΞConference State, DR M ::ΞDining State, etc., are
assumed in what follows.

The first operation is to construct a meeting:

Create Meeting =̂ M OP ∧ M V ::Create Meeting 0 ∧
CR M ::ΞConference State ∧ DR M ::ΞDining State

This operation has no precondition, so it is total (there is no precondition for
Create Meeting 0).

The next operation is to cancel a meeting:

Cancel Meeting 1 =̂ M OP ∧ M V ::Cancel Meeting 0 ∧
CR M ::ΞConference State ∧ DR M ::ΞDining State

We can determine the precondition for this operation as follows: first we establish
the constraint arising from the system invariant. The operation removes an element
from M V ::exists so this element cannot be a user in CR M or DR M during the
period M V ::t?. Formally, we require that

∀ t : M V ::t? •
(t 7→ M V ::r?) 6∈ CR M ::users ∧
(date of session(t) 7→ M V ::r?) 6∈ DR M ::users

The second part of the precondition is from the precondition for Cancel Meeting 0.
This is precisely

(∀ t : M V ::t? • (t 7→ M V ::r?) ∈ M V ::in use)

We shall at this point fulfil the promise made in Section 5.6, namely indicating how
to define the corresponding total operation. This is formed by the disjunction of
the successful operation with the schema which takes as its qualifying predicate the
negation of the precondition established above.

Cancel Meeting Fail
ΞCAVIAR
M V ::t? : P Session
M V ::r? : M

(∃ t : M V ::t? •
(t 7→ M V ::r?) ∈ CR M ::users ∨
(date of session(t) 7→ M V ::r?) ∈ DR M ::users ∨
(t 7→ M V ::r?) 6∈ M V ::in use)



5.11. MODULE: CAVIAR 95

Cancel Meeting =̂ Cancel Meeting 1 ∨ Cancel Meeting Fail

Informally, if the required precondition for the meeting cancellation is not satisfied,
the system is unchanged. In practice, we would require an appropriate error message
to be output.

For the sake of brevity, we shall present the remainder of the operations without
going through this process.

The next two operations add visitors to, and delete visitors from, a meeting:

Add Visitor to Meeting =̂ M OP ∧
M V ::Add Visitor to Meeting 0 ∧
CR M ::ΞConference State ∧ DR M ::ΞDining State

Remove Visitor from Meeting =̂ M OP ∧
M V ::Remove Visitor from Meeting 0 ∧
CR M ::ΞConference State ∧ DR M ::ΞDining State

The preconditions for these operations are straightforward to determine in the usual
way, and we shall omit them and those for the remaining operations also.

The next two operations deal with conference rooms:

Book Conf Room =̂ M OP ∧ M V ::ΞMeeting State ∧
CR M ::Book Conf Room 0 ∧ DR M ::ΞDining State

Cancel Conf Rooms =̂ M OP ∧ M V ::ΞMeeting State ∧
CR M ::Cancel Conf Rooms 1 ∧ DR M ::ΞDining State

We now have the two operations concerning dining rooms:

Book Dining Room =̂ M OP ∧ M V ::ΞMeeting State ∧
CR M ::ΞConference State ∧
DR M ::Book Dining Room 0

Cancel Dining Room =̂ M OP ∧ M V ::ΞMeeting State ∧
CR M ::ΞConference State ∧
DR M ::Cancel Dining Room 1

There is one final operation to be defined in this section: namely the cancellation of
both dining room and conference room(s) associated with a particular meeting. This
is not the conjunct of the two cancellation operations already given because each
of these leaves the components it is not acting on fixed. Hence we need a different
operation defined by

Cancel Meeting Arrangements 0
M OP
meeting? : M
M V ::ΞMeeting State
CR M ::Cancel Conf Rooms 1
DR M ::Cancel Dining Room 1

meeting? = CR M ::u? = DR M ::u?
CR M ::t? = {s : Session | (s 7→ meeting?) ∈ CR M ::users}
DR M ::t? = {d : Date | (DR M ::r? 7→ meeting?) ∈ DR M ::ru(d)}



96

The components CR M ::u?, CR M ::t?, DR M ::u?, DR M ::r?, and DR M ::t? are
auxiliary within Cancel Meeting Arrangements 0, so we hide them:

Cancel Meeting Arrangements 1 =̂
Cancel Meeting Arrangements 0 \ (CR M ::u?,CR M ::t?,

DR M ::u?,DR M ::r?,DR M ::t?)

5.11.3 Operations that involve visitors only

This section contains operations which involve V SYS only and leave M SYS un-
changed. We denote this group by

V OP =̂ ∆CAVIAR ∧ ΞM SYS

The first pair of operations introduce visitors to and remove visitors from the visitor
system:

Create Visitor =̂ V OP ∧ V P ::Create Visitor 0 ∧
HR V ::ΞHotel State ∧ TR V ::ΞTransport State

Destroy Visitor =̂ V OP ∧ V P ::Destroy Visitor 0 ∧
HR V ::ΞHotel State ∧ TR V ::ΞTransport State

The CAVIAR invariant induces a precondition for the Destroy Visitor operation:

∀ t : V P ::t? •
(t 7→ V P ::x?) 6∈

(HR V ::users ∪ TR V ::users D ∪M V ::users D)

The two operations concerned with hotel rooms are as follows:

Book Hotel Room =̂ V OP ∧ V P ::ΞVisitor State ∧
HR V ::Book Hotel Room 0 ∧ TR V ::ΞTransport State

Cancel Hotel Room =̂ V OP ∧ V P ::ΞVisitor State ∧
HR V ::Cancel Hotel Room 0 ∧ TR V ::ΞTransport State

The two operations concerned with transport reservations follow:

Book Transport =̂ V OP ∧ V P ::ΞVisitor State ∧
HR V ::ΞHotel State ∧ Book Transport 0

Cancel Transport =̂ V OP ∧ V P ::ΞVisitor State ∧
HR V ::ΞHotel State ∧ Cancel Transport 0

5.11.4 A general visitor removal operation

Finally we define an operation that removes a visitor entirely from the system for a
particular set of dates.



5.12. CONCLUSION 97

Delete Visitor 0
∆CAVIAR
v? : V
d? : P Date
CR M ::ΞConference State
DR M ::ΞDining State
HR V ::Cancel Hotel Room 0
TR V ::Cancel Transport 0
M V ::Remove Visitor from Meeting 0
V P ::Destroy Visitor 0

v? = HR V ::u? = TR V ::u? = M V ::u? = V P ::x? ∧
HR V ::t? = {d : d? | d 7→ v? ∈ HR V ::users} ∧
TR V ::t? = {t : Time | t 7→ v? ∈ TR V ::users ∧

date of time(t) ∈ d?} ∧
M V ::t? = {s : Session | s 7→ v? ∈ M V ::users ∧

date of session(s) ∈ d?} ∧
V P ::t? = {d : d? | d 7→ v? ∈ V P ::exists}

Within Delete Visitor 0 schema the components V P ::x?, HR V ::u?, TR V ::u?,
M V ::u?, HR V ::t?, TR V ::t?, M V ::t?, and V P ::t? are auxiliary, so we hide
them:

Delete Visitor =̂ Delete Visitor 0\
(V P ::x?,HR V ::u?,TR V ::u?,M V ::u?,

HR V ::t?,TR V ::t?,M V ::t?,V P ::t?)

5.12 Conclusion

This specification has created a conceptual model for the CAVIAR system which pro-
vides a precise description of the system state and its external interface, together with
an exact functional specification of every operation. The subtle inter-relationships
between constituent subsystems are described in the predicates that constrain the
combination of these subsystems, and these have been taken into account in the
specification of the operations. The system designer can now concentrate on the im-
portant parts of the design task: namely selecting appropriate data structures and
algorithms, without having to be simultaneously concerned with the complexity of
subsystem interactions. This reflects the classical principle of separation of concerns.

It may be argued that a specification such as we have given above is far from being
an actual product. Experience shows, however, that such specifications reduce sub-
stantially the effort required to develop executable software. In the case of CAVIAR, a
Pascal implementation was constructed directly and quickly, working from the earlier
specification.

Acknowledgements A formal specification of CAVIAR was given in 1981 by J.-R.
Abrial. This work was carried out at the Programming Research Group at Oxford
University in collaboration with Bernard Sufrin, Tim Clement and Ib Holm Sørensen.
Tim Clement implemented a prototype version of the specification on an ITT-2020
computer in UCSD Pascal. J.-R. Abrial’s original specification document listed most



98

of the properties of the system that appear in this document, though the style of the
presentation, the notation, and the conventions used in this chapter have since been
developed by members of the Programming Research Group.

We would like to thank J.-R. Abrial for his original contribution, and Ian Hayes for
editing this chapter and developing the experimental modularisation facility. Thanks
are also due to all those involved with the project, particularly the personnel in the
Visitor Services Department of STL, who willingly provided the team with informa-
tion about the current manual system in operation at that time.

We would also like to thank Bernie Cohen, Tim Denvir, and Tom Cox for their
initial effort in setting up this collaborative effort between STL and the Programming
Research Group and their continuing interest.

We would like to thanks Brendan Mahony for his assistance in producing the
special fonts used within this chapter.



Chapter 6

Towards a formal specification
of the ICL Data Dictionary

Bernard Sufrin

Abstract We present a formal specification of the ICL Data Dictionary system,
paying particular attention to the facilities it provides for controlling the retrieval
and updating of dictionary elements. We conclude by suggesting some modifications
to the design which would render the system simpler to understand and to implement
whilst retaining its full power. The specification notation Z [46, 61], which is based
on set theory, is used, and familiarity with the mathematical notions of predicate,
set, relation and function is assumed throughout.

Background The potential benefits of applying formal, or at least mathematically
rigorous, methods to the design and production of software are currently a topic of
much discussion and have been eloquently expounded elsewhere, for example in [21]
and in [33]. In common with many others, we believe that the time is ripe, perhaps
even overripe, for the application of these methods in an industrial context. This
report arose out of a challenge from ICL to work with a group of their practising pro-
grammers to investigate the applicability of the methods to a real commercial prod-
uct, the ICL Data Dictionary system (henceforward DDS). The company sponsored
a ten-day pilot project, during which we used mathematical techniques to investigate
two areas of DDS that its designers believe to be difficult to understand and explain,
namely the means provided for controlling access to dictionary elements, and the
support provided for multiple versions. Here we report on our investigation of access
control.

Copyright c© ICL Technical Journal, 1984. This paper was first published in the ICL Technical
Journal, November 1984.

99



100

6.1 Introduction

It is by now a matter of common knowledge that a substantial proportion of the
total costs of ‘bugs’ discovered during the lifetime of a computer-based system can
be attributed to mistakes made during the earliest stages of its development. It is
for this reason that we believe that the most appropriate time to construct – and to
use – a formal specification for a large system is before the system is built. Why,
then, attempt a mathematical specification of parts of a software product that is
already several years old? Firstly, the standard DDS documentation of access control
is rather difficult to understand, partly because the answers to many questions can
only be discovered by reading the complete product documentation in its entirety.
A concise formal description of the dictionary system from which the answers to
questions about access can easily be deduced will be useful in its own right, and
perhaps provide a basis for better product documentation. Secondly, a by-product of
the specification activity will be the construction of a conceptual framework within
which the consequences of simplifying the design of the system can be investigated.
Thirdly, even though we hardly expect the majority of DDS users to be able to read a
mathematical specification, in order to produce it at all we are forced to ask questions
of the implementers of the system which the product documentation presently fails
to answer adequately. These questions and their answers will certainly be of use to
the authors of subsequent editions of the product documentation. Finally, if used in
the spirit that it was made, the specification should also help to ensure compatibility
of successive versions and new implementations of the Dictionary.

6.2 Overview of the Data Dictionary System

The potential application areas of the DDS are outlined in detail in the first chapter
of its reference manual [31]. In essence it is a database system specially adapted to the
needs of supporting the construction, documentation and maintenance of collections
of programs which must be kept mutually consistent. Such collections are to be found
at computer installations everywhere, and without computer-based support they can
quickly become very difficult to manage.

For the purposes of this report it is enough for us to note that the system pro-
vides a means of naming, storing, manipulating and enquiring about any number
of elements, each of which may have several named properties which possess val-
ues. Some properties are possessed only by certain types of element, for example the
*TITLE-PAGE property of REPORT-PROGRAM elements. Other properties may
be possessed by any or all elements but are never acted upon by DDS, for example
the *DESCRIPTION and *NOTE properties, whose values are uninterpreted text.
Finally there is a class of properties which are administrative in nature and may be
possessed by any or all elements and which are interpreted (acted upon) by the DDS,
for example the *PRIVACY and *AUTHORITY properties which are possessed by
almost all elements. It is by setting administrative properties such as these that
an administrator may control aspects of the behaviour of a Data Dictionary at a
particular installation, and users may control how the elements they define can be
manipulated by others.

In order to begin constructing a mathematical model we must first introduce some
nomenclature. Let P denote the set of all possible names for properties possessed by
elements in the database, and let V denote the set of all possible values that these



6.3. ACCESS CONTROL 101

properties may take. For the moment we need not investigate the internal structure
of the sets P and V , though we will do so later.

In the manual, the term ‘element’ means an object consisting of a collection of
named properties which have values. Such an object may be modelled as a finite
mapping from property names to values. Let E denote the set of all possible elements
storable in a DDS database; we define it formally by

E == P 7 7→ V

Notice that this definition merely explains the essence of ‘elementhood’, but gives us
no clues about how to represent elements using the data structures that are available
in a conventional programming language.

If we take some liberties with the way in which we write values, and suppose that
authority, description, note and privacy are among the possible property names, then
we can give a couple of (possibly untypical) examples of elements:

{ authority 7→ Bernard , description 7→ ‘Formal Documentation’ }
{ authority 7→ Bernard , privacy 7→ 99,note 7→ ‘What’s a note?’ }

The term ‘element identifier’ means the name by which an element is known to the
DDS. If we let EI denote the set of all possible element identifiers, then the current
state of a DDS may be modelled as an object from the set EI 7 7→ E , which can be
expanded to EI 7 7→ (P 7 7→ V ). That is to say, a mapping from element identifiers
to elements, which are themselves mappings from property names to storable values.
Notice that in order to describe the state of a DDS at this level of abstraction it is not
necessary for us to give details of the internal structure of element identifiers, though
we will be forced to reveal this structure later.

6.3 Access control

In this section we present a sequence of successively more accurate descriptions of
the abstract information structures of a DDS which support access control. We do
so without making explicit the fact that the dictionaries are self-describing – in the
sense that these information structures are completely described by elements present
in the dictionaries themselves. In Section 6.4 we consider the state of a running DDS,
and show how some simple commands issued by users affect that state. In Section 6.5
we demonstrate in detail the relationship between our abstract description and the
stored elements with which the dictionary implements the structures introduced in
the first. Finally, in Section 6.6 we describe several more complex commands, whose
effects depend on the details just demonstrated.

6.3.1 Abstract information structures of DDS

Our first approximation is rather simple: we simply observe the set of element names
known to the system and the correspondence between these names and their stored
values. More formally, we define a schema DD0 which characterises the possible states
of a DDS.



102

DD0
elements : F EI
store : EI 7 7→ E

elements = dom store

The predicate below the bar records the invariant relationship we expect to hold
between the two observations: the element names known to the system are exactly
those which correspond to elements in the store.

A formalisation at this level of abstraction could serve as the basis of a model for
the data stored in any entity-attribute database! Since it fails to take into account
the specific characteristics of DDS that we are trying to explain, we shall discard it.

In our second approximation we record the fact that some elements have owners.
These are called authority elements in the product documentation, and form the basis
for one of the methods by which access to elements is controlled. When an ordinary
user runs one of the DDS programs, he or she may do so under the aegis of an
authority: access to elements in the dictionary depends, among other things, upon
this authority.

We begin to formalise this situation by introducing additional observations,
namely the finite set of authority element identifiers which have been introduced
by the dictionary administrator into the system, and a mapping from the identifiers
of stored elements to those of their owners.

DD1
store : EI 7 7→ E
elements : F EI
auth : F EI
owner : EI 7 7→ EI

elements = dom store
ran owner ⊆ auth ⊆ elements
dom owner ⊆ elements \ auth

The new predicates below the bar record the additional invariant relationships be-
tween our observations: all owners of elements must be authority elements, all au-
thority elements must be present in the store, but no authority element has an owner.

Notice that the last predicate is such that not all elements need an owner; indeed
it is consistent with a state in which no elements have owners. It turns out that it
is easier to explain the system if we invent a special ‘mythical’ authority – the nil
authority – and insist that every non-authority element has an owner (which might
be the nil authority). We formalise this in two steps: first we introduce a constant
element identifier, nil, to stand for the identifier of the mythical nil authority.

nil : EI

Next we give a new description of a DDS state, which incorporates the second
approximation but strengthens the invariant with two additional predicates: the first
states that nil is an authority element, and the second that all non-authority elements
must now have owners.



6.3. ACCESS CONTROL 103

DD2
DD1

nil ∈ auth
dom owner = elements \ auth

We now engage in a little speculation (with the best of pedagogical motives):
if the DDS designers had had an authoritarian or individualistic cast of mind, they
might have stopped their design activity at this point and insisted that only the owner
of an element can retrieve or update it. Under these circumstances we would have
been able to end our modelling activity by making just one more observation of the
state of a dictionary: the relation canaccess, which can be completely determined by
the values of the remaining observations of DD2, holds between an authority and an
element exactly when that authority would allow access to the element.

AuthoritarianDD
DD2
canaccess : EI ↔ EI

∀ user : auth; elt : elements •
user canaccess elt ⇔ owner elt = user

A marginally more libertarian group of designers might have interpreted ownership
by the nil authority somewhat differently and allowed anybody to retrieve or update
such elements:

NotQuiteSoAuthoritarianDD
DD2
canaccess : EI ↔ EI

∀ user : auth; elt : elements •
user canaccess elt ⇔ owner elt ∈ {user ,nil}

As might be expected the ICL designers wanted to make their system a little
more flexible than either of these descriptions indicate and we find both that they
have included a number of ways in which elements may be shared between authorities
and that they distinguish between retrieval and updating.

An authority may delegate rights to retrieve an element to one or more other
authorities. We formalise this by introducing the relation delegates, which holds
between an authority a and an authority a ′ if and only if a has taken steps to permit
a ′ to retrieve all the elements which a owns.

DD3
DD2
delegates : EI ↔ EI

delegates ∈ (auth ↔ auth)

Note that delegates cannot be declared to be of type auth ↔ auth because the scope
of auth is only the predicate part of the DD3.



104

Rights to a single element may be given by its owner to another authority, so we
introduce another relation, mayretrieve, which holds between an authority a and an
element e only if e’s owner has explicitly taken steps to allow a to retrieve it.

DD4
DD3
mayretrieve : EI ↔ EI

dommayretrieve ⊆ auth
ranmayretrieve ⊆ elements \ auth

As we shall see in the next section, part of the stored description of an authority
element is a description of the types of element which it may not update. Since our
description is not yet at a level of detail that includes types, we can discuss the right
of an authority to update an element in the database only in rather general terms.
In order to begin the discussion we add a relation maynotupdate to our observations.
This relation holds between a declared authority and the names of elements which it
has explicitly been forbidden to update; these can include elements that are not yet
in the store.

DD5
DD4
maynotupdate : EI ↔ EI

dommaynotupdate ⊆ auth

Note: Readers familiar with DDS will recognise that delegates is closely related to
the *RETRIEVE property of authority elements, that mayretrieve is related to the
*RETRIEVE property of non-authority elements, and that maynotupdate is related
to the *INHIBIT properties of authority elements.

If the designers had stopped here, we would characterise an authority’s rights to
retrieve and update elements by beginning to define the relation canretrieve, which
holds between an authority and the elements it is permitted to retrieve, and the
relation canupdate, which holds between an authority and the elements that the
system will allow it to update. At this stage the only thing we can say about the
updating is negative: namely that if an authority has explicitly been forbidden to
update an element then the system will prevent it from doing so.

DD6
DD5
canretrieve : EI ↔ EI
canupdate : EI ↔ EI

∀ user : auth; elt : elements •
(owner elt ∈ {user ,nil} ∨
(owner elt) delegates user ∨
user mayretrieve elt) ⇒ user canretrieve elt

∀ user : auth; elt : elements •
((user , elt) ∈ maynotupdate) ⇒
(user maynotupdate elt) ⇒ ¬ (user canupdate elt)



6.3. ACCESS CONTROL 105

The above specification does not completely determine the values of canretrieve and
canupdate. These definitions are strengthened in Figure 6.1, where the implications
in the above definition are strengthened to equivalences.

Although the system we have described above might have satisfied many designers,
it turns out that orthogonal to the system of ownership the DDS has a notion of levels
of privacy. Stored elements have a privacy level, which is a number between 0 and
99.

Level == 0 . . 99

Irrespective of the possibilities for retrieval afforded by the ownership system, a user
running under the aegis of an authority may retrieve any element whose privacy level
is less than or equal to that of the authority. (Incidentally, the product documentation
indicates that the privacy level of an element may be higher than that of its owner;
this allows a user to create a private object that the user may access, but none of the
user’s peers may access.)

The nil authority is given a privacy level of 0, which reflects its role as the ‘owner’
of elements intended to be universally retrievable. More formally

DD7
DD6
priv : EI 7 7→ Level

dom priv = elements
priv nil = 0
∀ user : auth; elt : elements •

priv elt ≤ priv user ⇒ user canretrieve elt

Again this definition does not completely define canretrieve; it is strenthened in Figure
6.1 below.

A dictionary administrator may decide for operational reasons to nominate one
authority as the master authority. This authority (if one has been nominated) may
retrieve and update any element in the dictionary, irrespective of ownership. A master
authority should not be confused with the dictionary administrator: although the two
roles might be played by the same person in many organisations, their functions are
entirely different.

The only element that does not have a privacy level in the range 0 . . 99 is the
master authority (if there is one). For our purposes it will simplify matters if we
attribute privacy level 99 to a master element if one exists: whilst this is not strictly
in accordance with the choice of representation made by the ICL designers, its conse-
quences are precisely the same. Note that the master authority (if there is one) may
not be forbidden to update elements. Note also that, by virtue of its privacy level,
the master authority has the right to retrieve any element at all.
Technical note: F1 EI means a finite set of EI with at most one element.

F1 X == {S : F X | #S ≤ 1}



106

DD8
DD7
master : F1 EI

master ⊆ auth
priv(| master |) ⊆ {99}
master ∩ (dommaynotupdate) = {}

This almost concludes the first part of our description of the information structures
which characterise a DDS and the invariant relations which hold between them. In
Figure 6.1 we summarise these information structures, formally simplifying some of
the predicates and recording two more things. The first of these is that the conditions
hitherto outlined are the only conditions under which retrieval can take place: this
is signified by strengthening the implications (⇒) of DD6 and DD7 to equivalences
(⇔). The second characterises updating more positively: an element may be updated
by its owner or by the master authority. Notice that it is possible for a non-master
authority that owns an element to be prevented from updating it.

Since we have not yet given any details of the structure of values, we have no way
yet of recording the fact that the owner of a stored element is stored as its authority
property. Nor can we record the fact that the set of authorities to whom an authority
has delegated all its access rights is stored as the retrieval property of that authority
element, and that the set of authorities which have been given the right of access to
an element by its owner is stored as that element’s retrieval property. We will only
be able to go into these details after revealing more of the internal structure of stored
values, element identifiers and property names in Section 6.5.

6.4 DDS dynamics: Part 1

In this section and its companion we describe the way in which certain commands
affect DDS information structures. In fact there are two distinct kinds of DDS run:
administrative runs, during which administrative commands may be issued; and or-
dinary runs, during which they may not. For the purposes of our investigation the
main difference is that certain kinds of element (in particular *AUTHORITY ele-
ments) may be inserted only during administrative runs, but otherwise may not.

Although one might expect the administrator to be the same as the master au-
thority, this turns out not to be so. For simplicity, therefore, we have avoided con-
sideration of administrative commands and concentrated on the most important non
administrative commands. Later we suggest a small simplification of the design which
would avoid the distinction between administrative and ordinary runs.

6.4.1 The state of a running DDS

In characterising the state of a running DDS we must account for the fact that users
‘log in’ under the aegis of an authority, which is deemed in our model to be the nil
authority for those users who run under ‘no authority’. In fact a password-based
scheme is used to check that an individual has the right to log in as a particular
authority, but the details of logging in are beyond the scope of this report.

Once the running authority is established, elements are processed by establishing
the ‘element context’, i.e. the identifier of the element to which subsequent commands



6.4. DDS DYNAMICS: PART 1 107

DD9
store : EI 7 7→ E
elements, auth : F EI
owner : EI 7 7→ EI
delegates,mayretrieve,maynotupdate : EI ↔ EI
priv : EI 7 7→ Level
master : F1 EI
canretrieve, canupdate : EI ↔ EI

elements = dom store
ran owner ⊆ auth ⊆ elements
dom owner ⊆ elements \ auth
nil ∈ auth
dom owner = elements \ auth
delegates ∈ (auth ↔ auth)
dommayretrieve ⊆ auth
ranmayretrieve ⊆ elements \ auth
dommaynotupdate ⊆ auth
dom priv = elements
priv nil = 0
master ⊆ auth
priv(| master |) ⊆ {99}
master ∩ (dommaynotupdate) = {}
(∀ user : auth; elt : elements • user canretrieve elt ⇔

user = owner elt ∨
(owner elt) delegates user ∨
user mayretrieve elt ∨
priv elt ≤ priv user)

(∀ user : auth; elt : EI • user canupdate elt ⇔
user ∈ {owner elt} ∪master ∧
¬ (user maynotupdate elt))

Figure 6.1: Summary of the information structures of a DDS



108

will refer. One thing that the product documentation does not make quite clear
is whether or not the element context identified by the user must always refer to
an already-defined element. This seems plausible, however, since there is a special
element whose identifier is null ; the null element context prevails at the beginning
of a run, after certain classes of errors, and after the stop command has been issued.
We therefore introduce a constant

null : EI

and characterise the state of a running DDS by the following:

DDS
DD9
user : EI
elementcontext : EI

user ∈ auth
null ∈ elements
(∀ a : auth • a mayretrieve null)
user canretrieve elementcontext

It is worth noting that the final constraint is a requirement imposed on the user,
namely that he or she should be able to retrieve the element to which commands will
subsequently refer.

In order to capture the effect of a command on a DDS, we relate the observations
made before the command is performed (denoted by the undashed names) to those
that can be made afterwards (denoted by dashed names). As is customary we factorise
our description of the commands into those properties that all the commands have
in common and those that are peculiar to particular commands.

The schema ∆DDS summarises the common characteristics of the effects of non-
administrative commands on a DDS: the set of declared authorities may not change,
nor may the master authority, nor may the authority of the running user.

∆DDS
DDS
DDS ′

auth ′ = auth
master ′ = master
user ′ = user

Some commands change the element context, or just display parts of the stored
dictionary, but do not change the information structures concerned with access con-
trol; their additional common properties are summarised in the schema 2DDS .

2DDS
∆DDS

owner ′ = owner
delegates ′ = delegates
priv ′ = priv
mayretrieve ′ = mayretrieve
maynotupdate ′ = maynotupdate



6.4. DDS DYNAMICS: PART 1 109

6.4.2 The display command

The simplest command to describe is the DISPLAY command, which displays parts
of the current element in a readable form. Below, we simply indicate that the user
must supply some property names, and that on completion of the command he or she
is presented (output readable!) with the values of the required properties as stored
for the element currently in context. We do not concern ourselves with the precise
form in which the display is presented.

Display
properties? : F P
2DDS
readable! : P 7 7→ V

#properties? = 1 ∨ properties? = P
readable! = properties? C (store elementcontext)
store ′ = store
elementcontext ′ = elementcontext

Those familiar with DDS should note that the ALLPROPERTIES variant of the
DISPLAY command corresponds to properties? = P , whilst the *property-keyword
variant corresponds to #properties? = 1. In order to simplify our description we
have not formalised either the PROMPTLIST or the EXPLOSION variants of this
command. To do either would require a more detailed model than we have so far
presented, though the detail is not complex.

6.4.3 Setting the element context

One command which plays at least three roles in the system is the FOR command:
all three variants of which the author is aware set ‘context’ in one way or another.
They are:

FOR VERSION < version element identifier >

FOR AUTHORITY < authority element identifier >

FOR < element identifier >

Since we do not treat version control here, we shall not consider the first of these. The
second corresponds to the beginning of a DDS run: it just sets the user authority after
checking a password and we shall not consider it here either. The third command is
used to set the current element context: it sets the null context if presented with an
element name that the current authority is not allowed to retrieve, or one that has
not yet been defined.



110

FOR
eid? : EI
2DDS

store ′ = store
user canretrieve eid? ∧ eid? ∈ elements ∧ elementcontext ′ = eid?
∨
eid? 6∈ elements ∧ elementcontext ′ = null
∨
¬ (user canretrieve eid?) ∧ elementcontext ′ = null

This concludes our account of the commands that have no effect on the stored
information. Before we can describe the remaining commands it will be necessary for
us to take a small detour and explain the relationship between the stored elements
and the access-control information.

6.5 Access-control information

In this section we formalise the fact that data dictionaries are self-describing. To put
this another way, the abstract information structures that we introduced in order to
explain the control of access to elements are actually represented by means of elements
and properties stored in the dictionary.

The properties named *AUTHORITY, *PRIVACY and *RETRIEVAL are de-
fined for most elements, so we introduce distinct constants into our specification
which will henceforth stand for these property names:

authority , privacy , retrieval : P

authority 6= privacy 6= retrieval 6= authority

Technical note: ‘a 6= b 6= c 6= d ’ abbreviates ‘a 6= b ∧ b 6= c ∧ c 6= d ’. The
above declaration introduces three variables of type P ; we require the values of these
variables to be distinct.

Properties may take values from a variety of types, but in the first part of this
section the only types we shall be concerned with are the numbers, N, single element
identifiers, EI , and finite sets of element identifiers, F EI . We can formalise the idea
that elements of these types can all be represented as values by introducing the three
injective functions:

Number : N � V
Element : EI � V
Elements : (F EI ) � V

disjoint〈ranNumber , ranElement , ranElements〉

Technical note: The definition above signifies that V contains exactly one value for
each number n : N, one value for each single element identifier ei : EI , and one value
for each set of element identifiers eis : F EI . These values are distinct and denoted
respectively by the terms Number(n), Element(ei) and Elements(eis).

All that now needs doing is to strengthen the invariant of the existing DDS de-
scription. In Figure 6.2 we summarise the qualities inherent in our use of the term
‘self-describing.’



6.5. ACCESS-CONTROL INFORMATION 111

DD10
DD9
has : EI ↔ P

∀ ei : EI ; p : P •
ei has p ⇔ ei ∈ elements ∧ p ∈ dom(store ei)

∀ ei : elements •
ei has privacy ∧

Number(priv ei) = (store ei)(privacy) ∨
¬ (ei has privacy) ∧ priv ei = 0

∀ a : auth •
a has retrieval ∧

Elements(delegates(| {a} |)) = (store a)(retrieval) ∨
¬ (a has retrieval) ∧ delegates(| {a} |) = {}

∀ ei : (elements \ auth) •
(ei has retrieval ∧
Elements(mayretrieve∼(| {ei} |)) = (store ei)(retrieval))
∨
¬ (ei has retrieval) ∧ mayretrieve∼(| {ei} |) = {}

∀ ei : (elements \ auth) •
ei has authority ∧

Element(owner ei) = (store ei)(authority) ∨
¬ (ei has authority) ∧ owner ei = nil

Figure 6.2: Data Dictionaries are self-describing



112

In order to simplify our account of the default values provided by the system,
we have introduced an additional observation: the relation has which holds between
an element identifier ei and a property name p exactly when ei has been stored
with a property named p. The first additional predicate records the fact that the
privacy level of each stored element is represented by the numeric value of its privacy
property. The second predicate records that the retrieval property of each authority
element represents the set of authorities who stand in the relation delegates to it.
The third predicate records that the value of the retrieval property of each non-
authority element represents the set of authorities which may retrieve it, and the
fourth predicate that its authority property represents its owner. Notice the different
intepretations given to the retrieval property of an authority element and the same
property of a non-authority element.

Hitherto we have given a rather abstract characterisation of the information struc-
ture which prevents certain authorities updating certain types of element, but we are
now in a position to give a fuller account. In order to do so we need to examine
the structure of the space of element identifiers (EI ) in a little more detail. In fact
this space is two dimensional; an element is identified by an element-type-identifier
(known in the product documentation as an element keyword) and a within-type
identifier. If we let K denote the set of element type identifiers, and I denote the set
of within-type identifiers, then we can define

[K , I ]
EI == K × I

An authority is prevented from updating certain types of element if the element
which describes the authority has a property called *INHIBIT. The value of this
property is the set of element type identifiers to which the authority is denied update
rights – despite any retrieval rights it may have. First we introduce another constant

inhibit : P

inhibit 6∈ {authority , retrieval , privacy}

and indicate that sets of element type identifiers may also be stored:

Types : F K � V

disjoint〈ranTypes, ranNumber , ranElement , ranElements〉

We then strengthen the DD10 invariant a little further, to indicate that the type
keyword of the element identifier that may not be updated by an authority a is one
of the set of keywords stored as the *INHIBIT property of the authority a.

DD11
DD10

∀ a : auth; et : K ; i : I •
a maynotupdate (et , i) ⇔

a has inhibit ∧ et ∈ Types∼((store a)(inhibit))

Our account of self-description is now as detailed as it needs to be for the purposes
of this report. Interested readers may care to take the account further and formalise



6.6. DDS DYNAMICS: PART 2 113

the fact that details of the properties possessed by elements of each type are recorded
in the database, as are details of the representation of each property. As a hint,
we will show how the authority elements in the dictionary are identified. First we
introduce the constant

AUTHORITY : K

to denote the AUTHORITY element keyword.
Note: In fact all elements with the same type have property names drawn from the
same set of names; these are stored as the *SYSTEM-PROPERTIES and *USER-
PROPERTIES properties of the element which describes the type. A complete for-
malisation of this is possible within the framework we have already established, but
goes beyond the scope of this report.

All that remains is to strengthen the state invariant yet again.

DD12
DD11

auth = {ei : elements | first ei = AUTHORITY }

In other words, the authority elements are exactly those whose keyword is AUTHOR-
ITY.

6.6 DDS dynamics: Part 2

In this section we complete our description of the DDS commands with a formalisation
of the behaviour of the INSERT and DELETE commands. The REPLACE command
is simply a combination of DELETE followed by INSERT, so we leave its formalisation
as an exercise for interested readers. Our formalisation is partial, in the sense that we
account only for the behaviour of successful commands. Whilst behaviour in the case
of erroneous commands can easily be described within the present framework, doing
so would not be particularly useful, especially in view of the simplifications we have
made (see Appendix 6.8). The change of state schema is updated with the addtional
components and constraints.

∆DDS1 =̂ DD12 ∧ DD12′ ∧ ∆DDS

6.6.1 Inserting elements

From its description in the product documentation, the INSERT command appears
to have two variants. The first takes a new element identifier and a set of property-
name, property-value pairs – in other words, an element – and stores the element as
the value of the identifier. If no authority property is given, then the owner of the
new element will be the current user; if no privacy property is given, then the element
will be given the privacy level of the current user. The command sets the current
element context to be the new element.



114

InsertNewElement0
eid? : EI
newelement? : P 7 7→ V
∆DDS1

eid? 6∈ dom store ∧
(letnewelement ′ ==

{authority 7→ Element user ,
privacy 7→ Number(priv user)} ⊕ newelement? •

store ′ = store ⊕ {eid? 7→ newelement ′})
elementcontext ′ = eid?

This description is such that if the privacy and authority properties are specified in
such a way that elementcontext ′ is no longer accessible, then the insert operation will
fail (the last invariant of DDS will not be satisfied). It seems to indicate that a user
running under one authority can add an element to the database but give ownership
rights to another authority. Whilst we found this rather difficult to rationalise, we
could not discover anything in the documentation that forbids it. On asking the
designers what really happens – an option that might not be open to the average
DDS user – we discovered that only the master authority can give ownership rights
to another authority when creating a new element. When the current user is not the
master and authority and privacy properties are supplied, then they must be the ones
which the system would provide by default anyway. Formalised concisely we have:

InsertNewElement
InsertNewElement0

user 6∈ master ⇒
authority ∈ domnewelement? ⇒

newelement?(authority) = Element(user) ∧
privacy ∈ domnewelement? ⇒

newelement?(privacy) = Number(priv user)

The second variant of the insert command takes a set of property-name plus
property-value pairs and incorporates them into the current element, providing that
it has no existing property with any of the names supplied.

InsertNewProperties0
newprops? : P 7 7→ V
∆DDS1

user canupdate elementcontext
¬ (∃ p : (domnewprops?) • elementcontext has p)
store ′ = store ⊕

{elementcontext 7→ ((store elementcontext) ∪ newprops?)}
elementcontext ′ = elementcontext

The documentation does not make it clear whether or not administrative proper-
ties may be added to an element by authorities other than its owner once it has been
inserted. On asking the designers, we discovered that the only administrative prop-
erty for which the description given above fails to account is the authority property:



6.7. PROSPECTS 115

the master authority can give ownership of an unowned element to any authority, but
non-master authorities can only take the ownership of such elements for themselves.
More formally:

InsertNewProperties
InsertNewProperties0

authority ∈ domnewprops? ⇒
user ∈ master ∨
newprops? authority = Element user

6.6.2 Deleting elements

DELETE appears in two variants: in the first, the user explicitly mentions an element
for the command to delete.

DeleteElement
eid? : EI
∆DDS1

user canupdate eid?
store ′ = {eid?} −C store
elementcontext ′ = null

In its second form, the user mentions some properties to be removed from the
current element. Unfortunately, the documentation does not make it clear whether
or not users may delete administrative properties from elements to which they have
update rights, nor is it quite clear what happens if the last remaining property of an
element is deleted. At first we assumed, albeit uneasily, that administrative properties
can be deleted, and that elements with no properties can remain in the store, so to that
extent our formalisation was inaccurate. Discussions with the implementation team
proved our unease to be well founded; we learned that if administrative properties
are deleted from an element by the user, then they revert to the default values which
the system would have provided if the element had just been inserted.

DeleteProperties
props? : F P
∆DDS1

user canupdate elementcontext
(let element ′ ==

{authority 7→ Element user , privacy 7→ Number(priv user)} ⊕
props?−C (store elementcontext) •

store ′ = store ⊕ {elementcontext 7→ element ′})
elementcontext ′ = elementcontext

6.7 Prospects

Although we would have liked to go on to describe the control of multiple versions in
DDS, the present design proved too hard for us to formalise simply. The specification,



116

therefore, has its limitations and it would be an unwise user who relied upon formal
deductions from it to discover the consequences of actions he might take whilst run-
ning the system itself. It nevertheless remains useful as a pedagogical tool because it
provides a discursive introduction to the concepts that underlie access control.

In our view the principal benefit of constructing the formal specification is the
fact that we have developed a framework within which designs of future dictionaries
can easily be investigated. Whilst it has been an interesting challenge to build a
mathematical model of a software system such as the Data Dictionary System, the
enterprise would remain simply an academic exercise if we were to stop at this point,
so we have tried to indicate how to use the framework by using it to make a tentative
proposal for simplifying the system. This is presented in Appendix 6.8.

Acknowledgements ICL sponsored the ten-day pilot experiment in technology
transfer which led (inter alia) to the production of this report. It is a pleasure to
acknowledge the help of Roger Stokes of ICL, who despite the multiplicity of demands
imposed on his time and talents, always remained interested enough in the experiment
to convince me that it was worthwhile. Jean-Raymond Abrial first showed me how
to apply mathematics to software specification and remains a continuing source of
inspiration.

6.8 Appendix: potential simplifications

Those familiar with DDS will have noticed that we have made an important sim-
plification already, by ignoring the ‘facility’ to refer to as-yet-undefined authorities
when adding or modifying properties. Although we have no definite knowledge about
the operational consequences of this facility, we hazard a guess that it causes more
aggravation than it saves: readers who have been victims of implicit declarations in
FORTRAN may care to comment on this.

The most obvious additional simplification would be to drop the independent
notion of privacy level, which seems to be orthogonal to authorities and ownership.
We are tempted to wonder if there are any DDS installations where both privacy and
authority are employed within the same dictionary. A further simplification would



6.8. APPENDIX: POTENTIAL SIMPLIFICATIONS 117

be to remove the distinction between the system administrator and other authorities.
This might well pay dividends in terms of enhancing the functionality of the system
and reducing the complexity of its documentation and implementation. Our design
goal is based on a new interpretation of the meaning of an authority element, which
we prefer to think of as a role, or locus of responsibility, rather than a particular
person. Indeed it is often the case that one individual plays several distinct roles in
an organisation.

In the design outlined below we make every authority subordinate to (‘owned by’)
some other authority; the root of this tree of authorities is the system administration
authority (which owns itself). Power to alter properties of elements reposes ultimately
in the administrator, which is able to delegate them to subordinate authorities, which
in turn can delegate them further if need be. Any element that several authorities
need to retrieve or to update should be owned by an authority which is higher in the
tree than all of them, and which delegates its retrieval or update rights to them all.

In order to formalise this design, we first need to introduce the idea of a ‘loop-free’
function, sometimes called a ‘tree’ or ‘forest’. Consider a homogeneous function

[X ]
f : X 7→ X

We say that an element x ′ : X is reachable via f from an element x : X if there is at
least one non-zero number, n : N1 for which x f n x ′. When this is the case, we write

x f + x ′.

More formally, we can define:

[X ]
+ : (X 7→ X ) → (X 7→ X )

∀ f : X 7→ X ; x , x ′ : X •
(x , x ′) ∈ (f +) ⇔ (∃n : N1 • (x , x ′) ∈ (f n))

Note that this definition is a specialisation to functions of the definition of + given
for relations in the glossary (Appendix A.7).

A function f : X 7→ X is said to be loop-free, or a forest, if there is no x : X which
is reachable from itself via f . More formally:

Forest [X ] == {f : X 7→ X | ¬ (∃ x : X • (x , x ) ∈ (f +))}

Our first approximation to a description of the design outlined above recalls our
description of the standard data dictionary: the main difference is that all elements
(including authority elements) are owned, and that if we confine our attention to
authorities other than the administrator, the ownership function is a tree.

The administrator is reachable from every element via the ownership function, i.e.
the administrator is ultimately responsible for everything in the dictionary.



118

DD13
store : EI 7 7→ E
elements : F EI
auth : F EI
owner : EI 7 7→ EI
admin : EI

elements = dom store
dom owner = elements
ran owner ⊆ auth ⊆ elements
admin ∈ auth
{admin} −C owner ∈ Forest [EI ]
∀ ei : elements • (ei , admin) ∈ (owner+)

The information structures from which the relations canretrieve and canupdate can
be derived are similar to those in the original design, except that there is no longer
a role for privacy levels, the nil authority no longer exists, and update permission is
characterised positively rather than negatively.

DD14
DD13
delegates : EI ↔ EI
mayretrieve : EI ↔ EI
mayupdate : EI ↔ EI

delegates ∈ auth ↔ auth
dommayretrieve ⊆ auth
dommayupdate ⊆ auth
delegates ⊆ owner∼

The last predicate states that an authority may only delegate its rights to authorities
for which it is responsible.

An authority can retrieve an element if it or any of its subordinates own the
element, or if it has been given explicit permission to retrieve it, or if it has been
delegated rights to retrieve the element. An authority can update an element if it or
any of its subordinates owns the element, or if it has been given permission to update
the element.



6.8. APPENDIX: POTENTIAL SIMPLIFICATIONS 119

DD15
DD14
canretrieve : EI ↔ EI
canupdate : EI ↔ EI

dom canretrieve ⊆ auth
dom canupdate ⊆ auth
∀ user : auth; elt : elements •

user canretrieve elt ⇔
((elt , user) ∈ (owner+) ∨
(owner elt) delegates user ∨
user mayretrieve elt)

∀ user : auth; elt : elements •
user canupdate elt ⇔

(elt , user) ∈ (owner+)
∨
user mayupdate elt

It might be nice if no authority possessed any capabilities that its owner does not
also possess. In other words, if within a dictionary:

canretrieve ⊆ owner o
9 canretrieve ∧

canupdate ⊆ owner o
9 canupdate

Interested readers may care to check whether or not this is the case, and if not,
to modify our formalisation so that it is.

Finally we propose a small project for the interested reader. Devise representations
(along the lines suggested by Figure 6.2) for mayretrieve, mayupdate, and delegates.
These should make the relations canretrieve and canupdate simple to compute, and
also make the system invariant simple to check.



120



Chapter 7

Flexitime specification

Ian Hayes

Abstract This paper gives a simplified specification of an actual flexitime system.
It is interesting for a number of reasons. It is brief and not too complicated, and gives
some good examples of the power of set theory in specification. A state is used which
is far richer than that necessary for an implementation, and this approach has as its
reward an overall simplification of the specification. It is simplified also by using an
absolute time frame rather than one using times only within the current pay period.

7.1 Introduction

Flexitime is a compromise between the rigidity of fixed working hours (e.g. ‘9 a.m. to
5 p.m.’) and the relative freedom having only to work a certain number of hours (e.g.
35 hours per week). The flexitime system developed here requires a certain number
of hours to be worked in each pay period, and in addition requires that all the hours
should be within certain limits (e.g. between 6 a.m. and 8 p.m.).

Keeping track of the time worked for each employee can be computerised, by
having employees ‘clock in’ whenever they start work and ‘clock out’ whenever they
stop.

7.2 State

We only record working time to the nearest minute:

Time == N

A period of time can be represented by a set of (not necessarily contiguous) min-
utes:

Period == P Time

We can represent the standard working times for a pay period by a set containing
all the minutes between 9 a.m. and 5 p.m., excluding the lunch break from 12 noon

121



122

to 1 p.m., for all the days in the pay period. In a similar way we can represent the
range of permissible flexitime working hours by a set of times.

The function Standard Hours takes a time as argument, and gives the set of stan-
dard working times for the pay period encompassing the time given as its argument.
For example, if pay periods were weekly, Standard Hours (12:00 14 February 1986)
might return the set of all minutes between 9 a.m. and 12 noon, and 2 p.m. and 5
p.m. on each day of the week from 10 to 14 February 1986.

Similarly, the function Flexitime Hours gives the set of minutes that could be
worked (and credited) in the period encompassing the time given as an argument.

Our model of the system records the times worked for all the employees, plus
the time at which people currently working clocked in. Each employee is assigned a
unique identifier from the set Ident .

[Ident ]

Flexi
Standard Hours,
Flexitime Hours : Time → Period
worked : Ident 7→ Period
in : Ident 7→ Time

dom(in) ⊆ dom(worked)

7.3 Operations

Each operation transforms a state before (Flexi) to a state after (Flexi ′):

∆Flexi =̂ Flexi ∧ Flexi ′

Some operations do not change the state:

ΞFlexi =̂ [∆Flexi | θFlexi ′ = θFlexi ]

Clocking in and out operations performed by employees involve them inserting
their unique (card) key into a special terminal, which transmits the employee’s iden-
tifier and the current time to the system. The system responds with an indicator of
the operation performed taken from the following set:

Response ::= In | Out | Balance | IdUnknown

The common part of the clocking operations is given by ∆Clocking .

∆Clocking
∆Flexi
ident? : Ident
t? : Time
ind ! : Response

ident? ∈ dom(worked) ∧
Standard Hours ′ = Standard Hours ∧
Flexitime Hours ′ = Flexitime Hours



7.3. OPERATIONS 123

The identity of the employee must be known. Clocking operations do not affect
Standard Hours or Flexitime Hours.

The operation of clocking in is given by the following schema:

ClockIn 0
∆Clocking

ident? 6∈ dom(in) ∧
t? ∈ Flexitime Hours(t?) ∧
in ′ = in ∪ {ident? 7→ t?} ∧
worked ′ = worked ∧
ind ! = In

The employee must not have clocked in already and the current time must be in the
bounds of the flexitime working hours for the current pay period. The employee is
clocked in at the given time.

The operation of clocking out is given by the following:

ClockOut 0
∆Clocking

ident? ∈ dom(in) ∧
worked ′ = worked ⊕

{ident? 7→ (worked(ident?) ∪ (in(ident?) . . (t?− 1)))} ∧
in ′ = {ident?} −C in ∧
ind ! = Out

The employee must have clocked in. The minutes worked since clocking in are credited
to the employee’s time worked. Only the period that lies within flexitime hours really
counts towards flexitime, but we have chosen to record the total working time in this
specification in order to simplify it and allow extensions to keep track of overtime
worked, etc. The minutes worked are all those minutes from the time the employees
clock in (though they may not have worked the whole of that minute) upto but not
including the minute in which they clock out (even though they have worked part of
that minute). On average, partial minutes not worked at clock in should cancel out
partial minutes worked at clock out.

On each transaction the system responds with the current credit or debit of time
worked by the employee within the current pay period, relative to the standard times.
We use the set

RelMinutes == Z

where a positive value indicates a credit and a negative value indicates a debit.

Worked
∆Clocking
cr ! : RelMinutes

cr ! = #(worked ′(ident?) ∩ Flexitime Hours(t?))−
#{t : Standard Hours(t?) | t < t?}



124

Only the period of time worked within the flexitime hours for the current pay period
counts.

The clocking operations in full are given by the following:

ClockIn =̂ ClockIn 0 ∧ Worked
ClockOut =̂ ClockOut 0 ∧ Worked

If employees not currently working insert a key outside flexitime hours they will
not be clocked in. However, they will receive an indication of their current time credit.

ReadOut
Worked

ident? 6∈ dom(in) ∧
t? 6∈ Flexitime Hours(t?) ∧
ind ! = Balance ∧
θFlexi ′ = θFlexi

If an unknown key is inserted an error response is given.

Unknown
ΞFlexi
ident? : Ident
ind ! : Response

ident? 6∈ dom(worked) ∧
ind ! = IdUnknown

The operations ClockIn, ClockOut and ReadOut have disjoint domains of appli-
cability. Outside flexitime hours only a ReadOut can occur. Inside flexitime hours
a ClockIn occurs if the worker is not already clocked in, otherwise a ClockOut oc-
curs. The only other possibility is an Unknown key, which again is disjoint from the
other possibilities. The operation of inserting a key is completely described by the
following:

InsertKey =̂ ClockIn ∨ ClockOut ∨ ReadOut ∨ Unknown

An administrative operation is required to add a new employee. The identity of
the new employee is chosen from those not already in use.

Add Employee
∆Flexi
ident ! : Ident

ident ! 6∈ dom(worked) ∧
worked ′ = worked ∪ {ident ! 7→ {}} ∧
in ′ = in ∧
Standard Hours ′ = Standard Hours ∧
Flexitime Hours ′ = Flexitime Hours

Acknowledgements This paper treats a simplified version of a problem first spec-
ified by Jolanta Imbert of the GEC Research Laboratories, Marconi Research Centre.



Chapter 8

Formal specification and
design of a simple assembler

Ib Holm Sørensen and Bernard Sufrin

Abstract We present the formal specification of a simple assembler, outline the de-
sign of a simple implementation, and demonstrate its correctness. Both specification
and design are presented at a rather abstract level, and are therefore unrealistic to
some extent. However, it is this high level of abstraction which allows the specifi-
cation and the design to be simply explained and easily understood, and permits a
proof that the design meets the specification.

8.1 Introduction

An assembler is a program that translates a sequence of assembly language instruc-
tions into a sequence of machine language instructions ready to place in the store of
a computer for execution. In this chapter we assume that the computer for which we
are going to specify our assembler is a ‘one address machine’ – in other words each
machine instruction has an opcode field and an operand field, and resides at a certain
address in the store of the machine. Depending on the value of the opcode field,
the operand field may be treated as an address or a number when the instruction is
executed by the machine.

Each assembly language instruction determines the value of the opcode and ad-
dress fields of a corresponding computer instruction, so an assembly language instruc-
tion has a symbolic opcode field and a symbolic or numeric operand field. When a
symbol appears in the operand field of an assembly language instruction, the assem-
bler should place the address with which the symbol is associated in the operand field
of the corresponding machine instruction. A symbol is associated with an address by

125



126

including a symbolic label field in the assembly language instruction which determines
the content of that address.

Some assembly language instructions, known as directives, do not correspond to
machine instructions, but are used to signify things such as the end of the input,
or a change of the radix in which numbers are expressed. In order to simplify our
discussion we will not consider this kind of directive at all. A typical translation
performed by the assembler is given in Figure 8.1.

Assembly Language Machine Language
Label Opcode Operand Location Opcode Operand
v1 : .const 100 1 100
v2 : .const 4095 2 4095
loop : load v2 3 01 2

subn 8 4 03 8
store v2 5 02 2
compare v1 6 50 1
jumple exit 7 61 9
jump loop 8 71 3

exit : return 9 77

Figure 8.1: A typical translation

We can specify the task an assembler must perform by explaining the relationship
of its input (a sequence of assembly language instructions) to its output (a sequence
of machine language instructions). We will find it easier to investigate the essence of
this relationship if we avoid considering things like error listings. This is not to say
that such things are not important in a more complete specification of requirements
for the assembler, but at present we are interested in capturing the essence of its task,
which is the translation of assembler instructions into machine instructions.

8.1.1 The structure of instructions

The first abstraction step we take is to decide that we need not understand how
assembler instructions are represented as character sequences nor how machine in-
structions are represented as bit sequences. In particular, all we need to know about
assembler instructions is that they have a label field or an opcode field or both, and
that they may have an operand field which is either a symbolic reference or a number,
but cannot be both. Similarly, all we need to know about machine instructions is that
they must have an opcode field or an operand field and may have both.

Let A denote the set of all possible assembly language instructions and M the set
of all possible machine language instructions. The next step in our construction of
the predicate is to investigate the structure of the two kinds of instruction, A and M .
In order to do so, we shall need to discuss label symbols and operation code symbols.
So, let the set of all possible label symbols be denoted by SYM and the set of all
possible opcode symbols by OPSYM .

[A,M ,SYM ,OPSYM ]

We can now formalise our idea of the essential structure of an assembly language
instruction.



8.2. REQUIREMENTS 127

lab : A 7→ SYM A1
op : A 7→ OPSYM A2
ref : A 7→ SYM A3
num : A 7→ N A3

dom ref ∩ domnum = {} A3
dom op ∪ domnum ∪ dom ref = A A4

A1 formalises the requirement that assembly instructions may have a label, A2 that
they may have an opcode, A3 that the optional operand may be numeric or symbolic
but not both, and A4 the requirement that they must all have an opcode or an
operand.

The essential structure of machine instructions may be formalised similarly.

opcode : M 7→ N M1
operand : M 7→ N M2

dom opcode ∪ dom operand = M M3

Finally, we assume that we have been given a way of translating symbolic opcodes
to the numbers which they represent, i.e. a function:

mnem : OPSYM 7→ N

The domain of this function is the set of valid mnemonic opcode symbols.

8.2 Requirements

We require that the assembler translate symbolic operands, where they appear, to
numbers representing the corresponding address, translate numeric operand fields
without changing them, and that it translate symbolic opcodes to their corresponding
number. Our specification is effectively the conjunction of predicates which formalise
these requirements.

8.2.1 Symbol definitions

Suppose that the input sequence of assembly instructions is

in : seqA

A sequence is a special kind of function from the natural numbers, so the composition

in o
9 lab

is a function of type, N 7→ SYM , which maps the position of each assembler instruc-
tion in which a symbolic label is defined to the label which is defined there. For the
example in Figure 8.1 we have

in o
9 lab = {1 7→ v1, 2 7→ v2, 3 7→ loop, 9 7→ exit}

The inverse of this function is in general a relation that maps each symbol to the
places in the input where it is defined as a label. For this reason we will find it
convenient to define

symtab == (in o
9 lab)∼ S1



128

In order to formalise the idea that there should be no multiply defined symbols, we
require that symtab be a function:

symtab ∈ SYM 7→ N S2

In general the inverse of a function may be a one-to-many relation: requiring that
symtab be a function is the same as requiring that it map each symbol in its domain
to a unique address. Later we will be able to give additional justification for this
intuitively obvious requirement.

8.2.2 Symbolic operands

The composition

in o
9 ref

is a function of type, N 7→ SYM , which maps the position of an assembler instruction
in the input to the symbol which is referenced there. For the example in the Figure
8.1

in o
9 ref = {3 7→ v2, 5 7→ v2, 6 7→ v1, 7 7→ exit , 8 7→ loop}

In addition

ran(in o
9 ref )

is the set of symbols referenced in the input. So, to express the requirement that all
symbols which are referenced by the input are defined there, we write

ran(in o
9 ref ) ⊆ dom symtab S3

8.2.3 Numeric operands

The function

in o
9 num

of type, N 7→ N, maps the position of an assembler instruction in the input to the
number which appears there. For our example

in o
9 num = {1 7→ 100, 2 7→ 4095, 4 7→ 8}

Because of the axioms for ref and num, the two functions (in o
9 ref ) and (in o

9 num)
have disjoint domains.

8.2.4 Symbolic opcodes

The function

in o
9 op

of type, N 7→ OPSYM , maps the position of an assembler instruction in the input
to the opcode symbol that is referenced by it. To formalise the requirement that all
referenced opcode symbols be valid mnemonics, we write

ran(in o
9 op) ⊆ dommnem S4



8.2. REQUIREMENTS 129

8.2.5 Operands of machine instructions

Suppose that the output sequence of machine instructions is

out : seqM

then the function

out o
9 operand

of type, N 7→ N, maps each machine address to the value of the operand field of the
instruction stored there. If the assembler instruction at position n has a symbolic
operand, then the operand field of the instruction at location n should take the value
of the symbol

(in o
9 ref )(n)

that is, ref (in(n)).
Provided that symtab is a function and that the symbol is indeed defined, then

its value is uniquely determined by

(in o
9 ref o

9 symtab)(n)

that is, symtab(ref (in(n))).
If the assembler instruction at position n has a numeric operand then the operand

of the corresponding machine instruction should take the value

(in o
9 num)(n)

We can express both of these requirements as a single equality, namely

(out o
9 operand) = (in o

9 ref o
9 symtab) ∪ (in o

9 num) S5

In order to check that our formalisation is sensible, we should ensure that the right
hand side of this equality is a function (since we have already established that the
left hand side must be so).

Since by virtue of the structure of the assembly language in o
9ref and in o

9num must
be functions with disjoint domains, the only thing left to ensure is that symtab itself
is a function; this condition corresponds to the no multiply defined symbols condition
which we discussed earlier.

8.2.6 Opcode fields

All that remains is for us to state the relationship we require between the opcode
fields of the input and the instruction fields of the output. This is simply

out o
9 opcode = in o

9 op o
9 mnem S6

Ensuring that every assembler instruction with an opcode field gives rise to a machine
instruction with a corresponding field is just a question of ensuring that the domain
of the right hand side is equal to the domain of in o

9 op. This is so, provided that the
range of in o

9op is a subset of the domain of mnem, which corresponds to the condition
all referenced opcodes must be valid mnemonics discussed earlier.



130

8.2.7 Specification summary

In this section we summarise the specification by defining the schema ASSEMBLY ,
which characterises the relationship we wish to hold between the inputs and outputs
of an assembler. We have labelled the clauses of the specification so as to illuminate
the proof steps we take later.

Context

[A,M ,SYM ,OPSYM ]

lab : A 7→ SYM A1
op : A 7→ OPSYM A2
ref : A 7→ SYM A3
num : A 7→ N A3

dom ref ∩ domnum = {} A3
dom op ∪ domnum ∪ dom ref = A A4

opcode : M 7→ N M1
operand : M 7→ N M2

dom opcode ∪ dom operand = M M3

mnem : OPSYM 7→ N

Specification

ASSEMBLY
in : seqA
out : seqM

∃ symtab : SYM 7→ N • S2
symtab = (in o

9 lab)∼ ∧ S1
ran(in o

9 ref ) ⊆ dom symtab ∧ S3
ran(in o

9 op) ⊆ dommnem ∧ S4
(out o

9 operand) = (in o
9 ref o

9 symtab) ∪ (in o
9 num) ∧ S5

(out o
9 opcode) = (in o

9 op o
9 mnem) S6

8.2.8 Consequences of the specification

It is easy to show that when an assembly is successful, the length of the output
sequence is the same as that of the input sequence. More formally

ASSEMBLY ` #out = #in



8.2. REQUIREMENTS 131

Proof

1. dom out = dom(out o
9 operand) ∪ dom(out o

9 opcode) M3
2. dom out = dom(in o

9 ref o
9 symtab) ∪ dom(in o

9 num) ∪
dom(in o

9 op o
9 mnem) 1,S5, S6

3. dom out = dom(in o
9 ref ) ∪ dom(in o

9 num) ∪ dom(in o
9 op) 2,S3,S4

4. dom out = dom in 3,A4
5. #(dom out) = #(dom in) 4
6. #out = #in 5

2

The precondition for a successful assembly is the existence of an output that
satisfies the predicate of ASSEMBLY . This is formally denoted by hiding the output.

PreASSEMBLY =̂ ASSEMBLY \ (out)

Technical note: The hiding operator ‘ \ ’ of the schema calculus is defined as follows:
the variables that are to be hidden are removed from the signature of the schema in
which they are to be hidden; and the predicate of the schema is existentially quantified
by the hidden variables. The definition above is therefore equivalent to the following:

PreASSEMBLY
in : seqA

∃ out : seqM • ASSEMBLY

Provided that we now insist that each machine instruction is uniquely characterised
by its opcode and operand fields, i.e.

∀m,n : M •
((opcode m) = (opcode n) ∧ (operand m) = (operand n))

⇒ m = n

the schema PreASSEMBLY simplifies to the following:

PreASSEMBLY
in : seqA

∃ symtab : SYM 7→ N • S2
symtab = (in o

9 lab)∼ ∧ S1
ran(in o

9 ref ) ⊆ dom symtab ∧ S3
ran(in o

9 op) ⊆ dommnem S4

Thus the specification states, amongst other things, that a program which is to be
assembled correctly must have no multiply-defined labels, no undefined symbolic ref-
erences and no invalid opcode mnemonics.



132

8.2.9 Discussion

We have established the basis for a small theory of simple assemblers. Such a theory,
however simple and abstract, gives us an intellectual handle by which we may grasp
much more complicated machine and assembly languages, such as those outlined in
exercises 4 and 5 below.

By formalising the essence of the relationship required between inputs and outputs
of the simple assembler we have illustrated the two principal techniques used in system
specification, namely representational abstraction and procedural abstraction. By
representational abstraction we mean the statement of all essential characteristics
of the information structures involved in describing a situation, without defining
the storage structures used in their representation. By procedural abstraction we
mean the statement of the input–output relationships involved in an activity without
defining the computational structures used to achieve them.

Any program that can be proved to behave in the manner indicated by the
ASSEMBLY schema, is, as far as we are concerned, an assembler. Of course we
have not yet given any clues about how to go about constructing such a program, but
that enterprise is the subject of the Section 8.3.

Exercises

1. What should the output sequence of instructions look like for erroneous input?
Is it important?

2. Specify the appearance of a listing on which errors, such as multiply-defined
and undefined symbolic references, are noted.

3. How could the specification be extended to cover radix directives in the input
language?

4. How could the specification be extended so as to describe an assembler for a
machine with registers?

5. Specify an assembler for a VAX-like machine, whose machine instructions do
not all occupy the same number of addressable units.

8.3 High-level design

In this section we outline the design of a simple two-phase implementation of the
assembler. During the first phase the assembler completely builds the machine in-
structions of the output which have operands specified numerically (or not at all)
in the input. It only partly builds the instructions which have operands that are
symbolically specified in the input, leaving the values of the operand fields of such
instructions indeterminate. It also constructs a reference-table, which records the po-
sitions where symbols were referenced in the input, and a symbol table, which records
their values. It uses these tables in the second phase to complete the building of the
machine instructions by giving values to symbolically specified operands.

We describe the first phase by defining a schema Phase1, which specifies the value
of the intermediate state in terms of the input. The second phase is described by
defining a schema Phase2, which uses the intermediate state to derive a value for



8.3. HIGH-LEVEL DESIGN 133

the output. Once we have made and explained these definitions we show how to put
them together to describe the complete implementation.

The definition and reference information of the intermediate state is characterised
as abstractly as possible below – as the relation st (symbol table) and the function rt
(reference table). The sequence core consists of machine instructions, some of which
may be only partly determined after the first phase.

IS
st : SYM ↔ N
rt : N 7→ SYM
core : seqM

The symbol table st is defined as a relation in the intermediate state to allow for
input to the first phase that contains multiple definitions of a label.

8.3.1 Design of the first phase

After the first phase, the symbol and reference tables should have been built, and all
the opcode and numeric operand fields should take the values in core that they will
have in the final output.

Phase1
in : seqA
IS

st = (in o
9 lab)∼ P1.1

rt = (in o
9 ref ) P1.2

(dom rt)−C (core o
9 operand) = (in o

9 num) P1.3
(core o

9 opcode) = (in o
9 op o

9 mnem) P1.4
ran(in o

9 op) ⊆ dommnem P1.5

The first condition, P1.1, specifies that the symbol table records all definitions of
each label. P1.2 specifies that the reference table records the symbol referenced at
each location whose assembly instruction had a symbolic operand. P1.3 specifies the
in-core values of operand fields derived from numeric operands in the input – that
is, those operand fields that are not symbolic references. The fourth condition, P1.4,
specifies the in-core values of the opcode fields. Finally, a precondition of the first
phase is that all opcode symbols are valid mnemonics, P1.5.

The reader may have noticed that the operand fields of instructions with symbolic
operands are left unspecified. Our reason for leaving them so is that at least one
well-known implementation technique uses the unfilled operand fields to store most
of the information present in the reference-table, and we do not wish to exclude such
an implementation technique at this early stage of design.

8.3.2 Design of the second phase

The second phase may assume that the output values of all opcode and numeric
operand fields are already present in core. It must determine the values of operand
fields which were specified symbolically. Since the input is no longer accessible, the
only way to tell the difference between symbolic and numeric operand fields is by
inspecting the domain of the reference table.



134

Formally, we have:

Phase2
IS
out : seqM

st ∈ SYM 7→ N P2.1
ran rt ⊆ dom st P2.2
(out o

9 opcode) = (core o
9 opcode) P2.3

(dom rt)−C (out o
9 operand) = (dom rt)−C (core o

9 operand) P2.4
(dom rt) C (out o

9 operand) = (rt o
9 st) P2.5

The first two conjuncts constitute a precondition for this phase (since out does not
occur in them): there must be no multiply-defined symbols, P2.1, and all referenced
symbols must be defined, P2.2. P2.3 specifies that the opcode fields of the output be
exactly the same as they were in core, and condition P2.4 specifies that the operand
fields of the output instructions with numeric operands also must be the same as they
were in core. The last condition, P2.5, specifies that the operand fields of the output
instructions with symbolic operands are given the values of the appropriate symbols.

8.3.3 Putting the phases together

It is tempting to describe the two-phase implementation by defining a schema

Implementation =̂ Phase1 ∧ Phase2

However, when an assembly is complete we do not particularly care what the value
of the intermediate state was, so we shall hide it in our definition:

Implementation =̂ (Phase1 ∧ Phase2) \ (st , rt , core)

8.3.4 Correctness of the design

In order to prove that our design is correct, it would be sufficient to prove that it is at
least as applicable as the specification, and that the result prescribed by the design is
consistent with the specification whenever the specification is applicable. In fact we
shall be able to show here that the implementation is equivalent to the specification.
We do this by expanding and simplifying the definition of the implementation using
the rules of the schema calculus and the laws of mathematics.

Taking the formal schema conjunction of the two phases and hiding the interme-
diate state gives the following:



8.3. HIGH-LEVEL DESIGN 135

Implementation
in : seqA
out : seqM

∃ st : SYM ↔ N; rt : N 7→ SYM ; core : seqM •
st = (in o

9 lab)∼ ∧ P1.1
rt = (in o

9 ref ) ∧ P1.2
(dom rt)−C (core o

9 operand) = (in o
9 num) ∧ P1.3

(core o
9 opcode) = (in o

9 op o
9 mnem) ∧ P1.4

ran(in o
9 op) ⊆ dommnem ∧ P1.5

st ∈ SYM 7→ N ∧ P2.1
ran rt ⊆ dom st ∧ P2.2
(out o

9 opcode) = (core o
9 opcode) ∧ P2.3

(dom rt)−C (out o
9 operand) = (dom rt)−C (core o

9 operand) ∧ P2.4
(dom rt) C (out o

9 operand) = (rt o
9 st) P2.5

If we exploit the equalities P1.2, P1.3, P2.4, P1.4 and P2.3, this can be simplified to

Implementation
in : seqA
out : seqM

∃ st : SYM ↔ N •
st = (in o

9 lab)∼ ∧
(dom(in o

9 ref ))−C (out o
9 operand) = (in o

9 num) ∧ IX
(out o

9 opcode) = (in o
9 op o

9 mnem) ∧
ran(in o

9 op) ⊆ dommnem ∧
st ∈ SYM 7→ N ∧
ran(in o

9 ref ) ⊆ dom st ∧
(dom(in o

9 ref )) C (out o
9 operand) = (in o

9 ref o
9 st) IY

thus eliminating core and rt from the quantified predicate.
We now combine IX and IY to yield I 5 using the restriction elimination law:

∀R : X ↔ Y ; S : P X •
R = (S −C R) ∪ (S C R)

The law follows directly from the definition of the domain exclusion (−C) and domain
restriction (C) operators.

Reordering the conjuncts of the quantified predicate, we obtain our final simplified
description of the implementation.

Implementation
in : seqA
out : seqM

∃ st : SYM ↔ N •
st = (in o

9 lab)∼ ∧ I1
st ∈ SYM 7→ N ∧ I2
ran(in o

9 ref ) ⊆ dom st ∧ I3
ran(in o

9 op) ⊆ dommnem ∧ I4
(out o

9 operand) = (in o
9 num) ∪ (in o

9 ref o
9 st) ∧ I5

(out o
9 opcode) = (in o

9 op o
9 mnem) I6



136

The specification is now equivalent to ASSEMBLY.

ASSEMBLY
in : seqA
out : seqM

∃ symtab : SYM 7→ N • S2
symtab = (in o

9 lab)∼ ∧ S1
ran(in o

9 ref ) ⊆ dom symtab ∧ S3
ran(in o

9 op) ⊆ dommnem ∧ S4
(out o

9 operand) = (in o
9 ref o

9 symtab) ∪ (in o
9 num) ∧ S5

(out o
9 opcode) = (in o

9 op o
9 mnem) S6

Because we may rename the bound variables of a quantified predicate without chang-
ing the meaning of the predicate, the two schemas ASSEMBLY and Implementation
are clearly equivalent, and we have therefore demonstrated the correctness of our
design.

The two phases may now be used almost independently as subjects for further
refinement. To be precise, independent refinements of the phases will refine the entire
specification provided either that the refinement of Phase1 is deterministic, or that
all intermediate states produced by the refinement of Phase1 satisfy the precondition
of the refinement of Phase2.

8.3.5 Discussion

We have constructed specifications for the two phases of an in-store assembler. In
each case we have captured the essence of the information processed by the phases,
but in neither case have we specified the order in which the information is pro-
cessed, nor have we specified the form in which this information will be stored in
the computer. This leaves several possibilities open to those who will define a more
computer-oriented realisation of the intermediate data structures and algorithmically
more explicit realisations of the two phases. In particular, our earlier suggestion that
the symbol reference-table be stored in the unfilled operand fields of core is consistent
with the specification of both phases, and might usefully be explored further by those
interested in completing a formally justified derivation of a real assembly program
based on this design.

Acknowledgements This chapter is a much altered version of [23]. We have bene-
fited from discussion over the years with colleagues and students at the Programming
Research Group. Jean-Raymond Abrial first showed us how to put set theory to
productive use as a software engineering tool, and remains a continuing source of
inspiration.



Part III

DISTRIBUTED
COMPUTING

Work on the Distributed Computing Software Project began at the Programming
Research Group of the Oxford University Computing Laboratory in 1982. The goal
of the project was to construct and publish the specification of a loosely coupled,
distributed operating system, based on the model of autonomous clients having access
to a number of shared services.

A fundamental objective of the project was to make use of mathematical tech-
niques of program specification to assist the design, development and presentation of
distributed system services.

Part III presents some of the results of the first stage of the project. It begins
with an overview of the use of mathematics in system design, and its application to
the specification of an example file service. It illustrates how abstraction from details
of implementation can allow the exploration of novel system designs.

The rest of Part III contains the user documentation for some of the services that
have been implemented. Surprisingly, it was possible to place the original specifica-
tions wholly within the corresponding user manuals; and so they illustrate how we
have been able to blend our abstract mathematical descriptions with the detail even
of the concrete syntax of a programming language interface.

The project was funded by a grant from the UK Science and Engineering Research
Council.

137



138



Chapter 9

The role of mathematical
specifications

Roger Gimson and Carroll Morgan

9.1 Introduction

The aim of the Distributed Computing Software Project was to explore the new
possibilities of distributed operating system design which have been made possible
by the low cost of distributed processing hardware. The mathematical techniques of
program specification and development play a crucial part in this aim for the following
reasons:

• we can use mathematical specifications to explore designs motivated purely by
ease-of-use rather than by ease-of-implementation (since specification allows
abstraction from implementation constraints);

• we have a precise notation in which such designs can be reliably communi-
cated to others, and which assists the discovery and discussion of the designs’
implications;

• it is possible to present the specifications directly in the user manuals of the
distributed operating system, thus increasing their precision while decreasing
their size; and

• we are able to use the mathematical techniques of refinement to produce imple-
mentations that are highly likely to satisfy their specifications (and hence are
also accurately described by their user manuals).

It is especially important that those benefits should be realised in the construction
of a distributed operating system – because distributed operating systems offer the
rare opportunity for the user to control the system, rather than vice versa. The high

This chapter appeared in the book Distributed Computing Systems Programme (ed. D. A. Duce),
published by Peter Peregrinus Ltd. 1984, under the title ‘Ease of use through proper specification’.

139



140

bandwidth of current local area networks allows an efficient modularity; for example,
a structure consisting of largely autonomous services and clients is entirely feasible.
In such a system, the choice between (rival) services, and the manner in which they
are used, would be entirely up to the clients. This is the basis of the open systems
approach: provided services are well-specified, clients are free to make use of them in
whatever manner is consistent with their specification.

9.2 A first example

One of the most visible parts of any operating system is its file system. Even today,
the design of these range in quality from excellent to horrific. But others, of course,
may think instead that they range from horrific to excellent: the features one user
cannot do without, another may abhor. It is through such features that an operating
system controls (even the thoughts of) its clients, and this is exactly what we hope
to avoid.

A file service in a distributed operating system is there to be shared by as many
clients as possible. To achieve this, it must be unopinionated: it must have so few
features that there is nothing anyone could object to. It is only in the context of
specification that we can propose such a radical design; any less abstract context
introduces efficiency constraints. Some of these, of course, will have to be met even-
tually, but perhaps not all of the ones that might conventionally be presumed. We
must not introduce such constraints simply because we could not express ourselves
without them: first we state what we would like – then we can compromise.

As an example, let us consider the simplest file system design one could imagine.
We describe it as a partial function files from the set Name of file names:

[Name]

to the set FILE of all possible files:

files : Name 7→ FILE

We say nothing about the structure of the set Name. The structure of the set FILE
is developed below.

The mathematical notation above introduces the variable files, and gives its type
as Name 7→ FILE . The English text states that this variable is to describe the file
system. Our style of mathematical specification is an example of the Z specification
technique, and we will continue to use it below.

We propose two operations only on the file system: StoreFile stores a (whole) file,
and RetrieveFile (destructively) retrieves it.

StoreFile Let files be the state of the file system before the operation, and let files ′

be the state afterwards. Let file? be the file to be stored, and let name! be some
filename, chosen by the filesystem, which will refer to the newly stored file. That is,
given

files,files ′ : Name 7→ FILE
file? : FILE
name! : Name



9.3. THE FIRST COMPROMISES 141

the effect of StoreFile is to choose a new name, which is not currently in use

name! 6∈ domfiles

and to update the partial function by overriding its current value, so that after the
operation it maps the new name to the newly stored file:

files ′ = files ⊕ {name! 7→ file?}

(We notice as an immediate advantage of our abstraction that we have given the
implementor the freedom to store identical but differently named files using shared
or separate storage, as he chooses.)

RetrieveFile Let files be the state of the file system before the operation, and let
files ′ be the state afterwards. Let name? be the name of the file to be retrieved, and
let file! be the file itself. That is, given

files,files ′ : Name 7→ FILE
name? : Name
file! : FILE

the effect of RetrieveFile is to return the named file to the client

file! = files(name?)

provided it exists

name? ∈ domfiles

and to remove the name (and hence the file) from the partial function that represents
the file system

files ′ = {name?} −C files

The description above is ‘of course’ not feasible with today’s technology – which is
a pity. It would be too impractical to have to retrieve a whole large file if we wished,
say, just to read one small piece of it. But how wonderful it would be if a file system
could be so simple! At least we were able to describe it.

9.3 The first compromises

The best we can do with our simple file system is to use it as the basis for a develop-
ment of a more practical design – and the description above provides a context into
which the necessary compromises can be introduced. Here are some of them (in no
particular order).



142

Compromise Reason

It must be possible to read the file
without deleting it.

The communication medium is not en-
tirely reliable – a breakdown during re-
trieval could destroy the file without
returning its contents.

Clients must be prevented from de-
stroying the files of others (remember,
a file can’t be updated).

Mistakes are inevitable – even honest
clients could accidentally destroy other
clients’ files.

Files must be given a limited lifetime,
and clients must be charged for their
storage.

Any implementation of the file system,
however capacious, will still be finite.

We introduce these compromises in a revised design. First, we name four new sets:

1. the set of client identifications

[Client ]

2. the set of instants (e.g. seconds from 1 January 1980 – but we need not be
specific here)

Time == N

3. the set of costs (e.g. pence)

Money == Z

allowing both debits and credits, and

4. the set that contains all the possible values a client could store in a file (its
contents)

[Data]

The definition of a file is extended to include the identification of its owner, and
its time of creation and (eventual) expiry. We collect these attributes in a schema
FILE , and state at the same time that in any file, the creation time must precede
the expiry time.

FILE
owner : Client
created ,
expires : Time
contents : Data

created ≤ expires



9.3. THE FIRST COMPROMISES 143

The schema FS below describes the state of the file storage system itself:

FS
files : Name 7→ FILE

and the schema ∆FS describes the general aspects of any operation on it.

∆FS
files,files ′ : Name 7→ FILE
who : Client
when : Time

who is the identity of the client performing the operation, and when is the time at
which it is performed. We can abbreviate ∆FS (without changing its meaning) by
building it from the schema FS instead of directly from the variable files.

∆FS
FS
FS ′

who : Client
when : Time

StoreFile The (revised) StoreFile operation we present as a schema including the
variables files, files ′, who and when (supplied by ∆FS ), as well as the data to be
stored (contents?), the expiry time (expires?), the new name chosen by the service
(name!) and the charge made in advance (cost !). The charge made is some function
Tariff of the file (hence of its owner, creation and expiry times, and contents). Here
is a possible definition of Tariff (which depends in turn on some function Size).

Size : Data → N
Tariff : FILE → Money

Tariff = (λFILE • (expires − created) ∗ Size(contents))

StoreFile
∆FS
contents? : Data
expires? : Time
name! : Name
cost ! : Money

(∃FILE ′ •
owner ′ = who ∧ created ′ = when ∧
expires ′ = expires? ∧ contents ′ = contents? ∧
name! 6∈ domfiles ∧
files ′ = files ⊕ {name! 7→ θFILE ′} ∧
cost ! = Tariff (θFILE ′))

A new file FILE ′ is constructed which is owned by the client storing it, which records
its creation time as the time it was stored, which will expire at the time the client
specified (then becoming inaccessible), and whose contents the client supplies. A new
name name!, not currently in use, is chosen and the file is stored under that name.



144

ReadFile The ReadFile operation returns the expiry time and the contents of the
file stored under a given name. Its parameters are the name of the file to be returned
(name?), when it will expire (expires!) and its contents (contents!).

ReadFile
∆FS
name? : Name
expires! : Time
contents! : Data

θFS ′ = θFS
name? ∈ domfiles
(∃FILE •

θFILE = files(name?) ∧
expires > when ∧
expires! = expires ∧
contents! = contents)

ReadFile does not change the state of the service. The map files is applied to the
name, to determine the file’s value, θFILE , which must not have expired. Its expiry
time and contents are returned.

DeleteFile The DeleteFile operation removes a file from the service. A rebate is
offered as an incentive to deletion before expiry. name? is the name of the file to
be deleted, and cost ! is the (possibly negative) charge made for doing so (we assume
negation ‘−’ is defined on Money). The cost is determined by a function Rebate of
the file and its deletion time. Here is a possible definition of Rebate:

Rebate : FILE × Time → Money

Rebate = (λFILE ; when : Time • (expires − when) ∗ Size(contents))

DeleteFile
∆FS
name? : Name
cost ! : Money

name? ∈ domfiles
(∃FILE •

θFILE = files(name?) ∧
expires > when ∧
owner = who ∧
files ′ = {name?} −C files ∧
cost ! = −(Rebate(θFILE ,when)))

The map files is applied to the name, to determine the file’s value, θFILE , which must
not have expired. It must be owned by the deleting client. The file’s name, name?
(and hence the file itself), are removed from the partial function which represents the
stored files.

Naturally, there are other compromises that could be made, in addition to or
instead of those above. In the next section, however, we discuss a compromise which
we suggest should not be made.



9.4. A COMPROMISE AVOIDED 145

9.4 A compromise avoided

One glaring inefficiency remains in our proposal: that we must transfer whole files
at once. Many clients will not have the time or resources (e.g. local memory) to do
this. But here we will not compromise by modifying our file storage service to cater
for this inefficiency – rather we insist that the business of the file storage service will
be file storage exclusively. Partial examination and updating will be the business of
a file updating service.

To propose a service that treats the contents of files as having structure, we must
propose a structure. The proposal we make is the very simple view that the contents
of a file is a sequence of pieces. (Recall that sequences are functions from the natural
numbers N to their base type, and begin at index 1.) We do not wish to say what a
piece is, however, for this description.

[Piece]
Data == seqPiece

The file updating service, in fact, has no state; all its work is done in the calculation
of its outputs from its inputs. Its two operations are ReadData and UpdateData.

ReadData ReadData takes the contents of a file, contents?, a starting position,
start?, and a number of pieces to be read, number?, and returns the data, pieces!, at
that position within contents?. (#pieces! is the length of the sequence pieces!, and
1 . . #pieces! is the set {i : N | 1 ≤ i ≤ #pieces!}.)

ReadData
contents? : Data
start?,
number? : N
pieces! : Data

#pieces! = min{number?, (#contents?− start?)}
(∀ i : 1 . . #pieces! • pieces!(i) = contents?(i + start?))

The length of the data returned is equal to the number of pieces requested, if possible;
otherwise, it is as large as the length of contents? will allow. The ith piece of pieces!
returned is equal to the (i + start?)th piece of contents?.

UpdateData UpdateData takes the contents of a file, contents?, a position, start?,
and some data, pieces?, and returns an updated contents, contents!.



146

UpdateData
contents?,
contents! : Data
start? : N
pieces? : Data

#contents! = max{#contents?, (start? + #pieces?)}
start? ≤ #contents?
(∀ i : 1 . . #contents! •

(i − start?) ∈ 1 . . #pieces? ⇒
contents!(i) = pieces?(i − start?) ∧

(i − start?) 6∈ 1 . . #pieces? ⇒
contents!(i) = contents?(i))

The length of the new contents is equal to its original length, unless an extension was
necessary to accommodate the new data; however, the new data must begin within
the original contents or immediately at its end. The ith piece of contents! is equal to
the (i − start?)th piece of pieces?, if this is defined; otherwise, it is equal to the ith
piece of contents?.

Our proposal is of course only one of the many possible (for a different proposal, see
the definition of these operations in Chapter 4). We could, of course, propose several
updating services, each providing its own set of facilities. Moreover, the original
operations which transferred whole files would still be available to those clients able
to use them (see Figure 9.1).

'
&

$
%

Storage
service

'
&

$
%

Updating
service A

�
�
�3

�
�
�+

Whole files
transferred

'
&

$
%Client 1

6

?

Pieces
transferred

'
&

$
%Client 2

6

?

Whole files
transferred

'
&

$
%

Updating
service B

Q
Q

Qk

Q
Q
Qs

Whole files
transferred

'
&

$
%Client 3

6

?

Pieces
transferred

Figure 9.1: Separate updating and storage services



9.5. MODULARITY AND COMPOSITION OF SERVICES 147

9.5 Modularity and composition of services

The structure we have presented above separates the issues of how files should be
stored from how they should be manipulated. As a result, we have offered users an
unusual freedom of choice – they can read just one piece of a file, or they can treat
a file as a single object (with the corresponding conceptual simplification; Stoy and
Strachey [59], for example, allow this in their operating system OS6).

Still, it is likely that a further compromise will be necessary: for large files, the
time taken to transfer the file between the two services (storage and updating) may
not be tolerable. We solve this not by changing our design, but by an engineering
decision: for applications that require it, we will provide the two services together in
one box, and the transfers will be internal to it (see Figure 9.2). Its specification we
construct by combining the material already available.

'
&

$
%

Updating
service A

'
&

$
%

Storage
service

� -
Whole
files

transferred

'
&

$
%Client 1

?

6

Pieces
transferred

'
&

$
%Client 2

?

6

Whole files
transferred

Figure 9.2: Combined updating and storage service

StoreFile, ReadFile and DeleteFile are available as before. However, we introduce
two new operations, ReadStoredFile and UpdateStoredFile, whose specifications are
formed by composing the specifications given above. (The schema piping operator
‘>>’, used for this, is defined in the glossary.)

ReadStoredFile Reading a stored file is performed by first reading the whole file
with ReadFile, and then reading the required portion of its contents using ReadData.
In Z we write this

ReadStoredFile =̂ ReadFile >> ReadData

If we were to expand this definition of ReadStoredFile, the result would be as follows:



148

ReadStoredFile
∆FS
name? : Name
start?,
number? : N
expires! : Time
pieces! : Data

θFS ′ = θFS
name? ∈ domfiles
(∃FILE •

θFILE = files(name?) ∧
expires > when ∧
expires! = expires ∧
#pieces! = min{number?, (#contents − start?)} ∧
(∀ i : 1 . . #pieces! • pieces!(i) = contents(i + start?)))

ReadStoredFile takes a file name, name?, a starting position, start?, and a number
of pieces, number?, and returns the expiry time of the file, expires!, and the data,
pieces!, found at the position specified. (expires! is returned by ReadStoredFile be-
cause ReadFile returns it; we could have dropped this extra output using the schema
component hiding operator.)

UpdateStoredFile The complementary operation UpdateStoredFile is a more dif-
ficult composition, since we must accumulate the costs of the component operations,
and we must ensure that the updated file is (re-)stored under its original name. For
the sake of honesty, we give the definition, but we will not expand it.

UpdateStoredFile =̂
ReadFileo

9

DeleteFile[dcost !/cost !]>>
UpdateData>>
StoreFile[name?/name!, scost !/cost !]o9
[dcost?, scost?, cost ! : Money | cost ! = dcost? + scost?]

UpdateStoredFile first reads the whole file, then deletes it, then updates the contents,
and then stores the new contents under the file’s original name. Finally, it presents
as its overall cost the sum of the two charges made by DeleteFile (which may well be
negative) and StoreFile.

What we have done is to compose two simple but infeasible operations to produce
a more complicated but feasible one (rather like the use of complex numbers in elec-
trical engineering, for example). Naturally, the implementor need not transfer whole
files back and forth within his black box on every read and update operation – but
nevertheless the updating and storage service provided by the box must behave as if
he does: that is, it must behave as we have specified. Our decomposition was chosen
for economy of concept; the implementor’s must be chosen for economy of time and
equipment, and the whole range of engineering techniques are available to him to do
so (caches, update-in-place, etc.).



9.6. CONCLUSIONS 149

9.6 Conclusions

The Distributed Computing Project has followed the general principles above, but
it has in fact adapted to constraints in different ways. Its storage service, which we
have implemented in prototype, stores blocks of a fixed size (rather like the service
described by Biekert and Janssen [2]). This distinguishes it as a ‘universal’ storage
service from, say, the one implemented at Cambridge (described by Needham and
Herbert [47]). Organisation of blocks into files, the keeping of directories, etc., is
done by software in the clients’ own machines (for example, using a ‘File Package’
as described by Gimson [12]). This allows clients freedom in the choice of what file
structure they build, but of course makes the sharing of files more difficult. If one
package should become popular, however, it could be placed in a machine of its own,
and so become a service.

There are many aspects of the project that it has not been possible to cover. For
example, the specification of the errors that may occur in use is an essential part
of the full specification of a service. We include such details in the user manuals
of the services we have implemented. The manuals follow the style of specification
presented here, combining formal text and English narrative to give a precise yet
easily understandable description of the user interface to a service.

So far, the pressure of simplicity in our mathematical descriptions has kept the
designs correspondingly simple. At present, they are perhaps too much so; but by us-
ing mathematical specification techniques we have built basic services that genuinely
are simple. And that is where one must begin.

The styles of specification, and of presentation of user manuals, have to some
extent been developed in parallel with the software to which they have been applied.
These styles are now more stable, and further services have been specified, designed
and implemented in the same way.

The goal of the project was to produce a suite of designs from which implemen-
tations could be built on a variety of machines. Each design is documented, in a
mathematical style, both for the user and for the implementor. Thus the primary
goal is to construct a distributed system on paper.

For a paper construction to have any value, the designs proposed in it must be
widely applicable, and genuinely useful. Machine-independent techniques of descrip-
tion take care of the first requirement. To ensure that the second is met, prototype
implementations must be constructed of each of the designs, and experience must be
gained of their use.



150



Chapter 10

Authentication of usernames

Roger Gimson and Carroll Morgan

10.1 Nicknames and usernames

As a short-term measure, a very simple scheme has been chosen to make it difficult
for one client to impersonate another.

Each registered client has a nickname and a username. Nicknames are allocated
from a set Nickname

[Nickname]

and the allocation is public – i.e. it is common for clients to know each others’
nicknames. It is expected that nicknames will change only rarely, if at all.

Usernames are allocated privately, from a set Client ; a client should not reveal
his username to anyone else. Since usernames may become compromised (known by
too many people) or forgotten (known by too few!), it might be necessary to change
a client’s username from time to time.

10.2 Authentication

Authentication is achieved by the existence of a (secret) partial function

GetNickname : Client 7� Nickname

which gives for any username the nickname of the client who should be its sole pos-
sessor. Since the set Client of usernames has been made very large, and the set

domGetNickname

of authentic usernames has been made a relatively small part of it, it will be hard
for clients to guess the usernames of others. Services may therefore use the function
GetNickname to authenticate their clients; they might reject requests for which

client? 6∈ domGetNickname

151



152

10.3 Guest user

There is a guest username GuestClient , which some services might recognise as a
special case. This username is public, and is expected to be used by clients temporarily
without a private username of their own. It is guaranteed that the guest username is
not the authentic username of any client.

GuestClient : Client

GuestClient 6∈ domGetNickname



Chapter 11

Time service – user manual

Roger Gimson and Carroll Morgan

11.1 Time service operation

The time service provides only one user operation, GetTime, which returns the current
time in seconds since 00:00:00 1 January 1980. The description of the operation has
three sections, titled Abstract, Definition and Reports.

The Abstract section gives a procedure heading for the operation, with formal
parameters, as it might appear in some programming language. The correspondence
between this procedure heading and an implementation of it in some real programming
language must be obvious and direct. Each formal parameter is given a name ending
with either ‘?’ or ‘!’. Those ending with ‘?’ are inputs, and those ending with ‘!’ are
outputs.

The Definition section defines the meaning of the operation.
The Reports section lists the possible (success or failure reporting) values which

the report ! formal parameter can assume. Reports are discussed in more detail in
Section 11.2.

GetTime

Abstract

GetTime ( client? : Client;
now! : Time;
cost! : Money;
report! : Report)

Definition The current time, now !, is returned, measured in seconds from 00:00:00
1st January 1980. The cost, cost !, is fixed. The client’s username, client?, must be
authentic (see Chapter 10).

client? ∈ domGetNickname

153



154

Reports The following errors may be reported:

Success
ServiceError

11.2 Error reports

The report parameter, report !, indicates whether the operation succeeded or failed.
The value Success indicates that the operation succeeded. The value ServiceError
indicates that the operation failed; in this case, no reliance should be placed on any
other values returned. Possible reasons for this report are the following:

• the service is not running; or

• there was a communication error.

11.3 Modula-2 interface

DEFINITION MODULE TI; (* Time Service - Modula-2 Interface *)

FROM SVTypes IMPORT Client, Time, Money;

EXPORT QUALIFIED Report, GetTime;

TYPE Report = ( Success, ServiceError);

PROCEDURE GetTime (InClient : Client;
VAR OutNow : Time;
VAR OutCost : Money;
VAR OutReport : Report);

(* return current time *)
END TI.



Chapter 12

Reservation service – user
manual

Roger Gimson and Carroll Morgan

12.1 Introduction

The distributed operating system at the Programming Research Group is made up
of various services which are largely independent. In particular, it is possible that
one service can be turned on or turned off while other services and clients continue
to run.

When a service is turned off (shutdown), there should not be any client who is at
that moment involved in some series of interactions with it – because interruption of
such a series could be quite inconvenient (for the client). If such series (or transac-
tions) can be recognised by the service, it is possible to avoid this inconvenience by
the following shutdown procedure.

1. The operator requests shutdown of the service.

2. The service rejects any attempt to begin a new transaction, but allows current
transactions to continue.

3. When all transactions have completed, the service notifies the operator that
shutdown is complete.

However, there are some problems; for example, clients might themselves fail to
complete transactions (presumably due to accidental failure of their own software).
If this happened, the service would never shutdown. A more serious problem is that
for some services (e.g. the block storage service) there is no recognisable transaction
structure, and so the above scheme cannot be used at all. We solve both problems
with an independent Reservation Service.

The reservation service does not interact at all with the service it reserves; it
interacts only with its own clients, and with the operator. It allows clients to state
when, and for how long, they would like to use the reserved service, and it allows the
operator to state a shutdown time beyond which all reservations are to be rejected.

155



156

It becomes the clients’ responsibility to protect themselves from sudden shutdown of
the service (by making reservations), and the operator’s responsibility to turn off the
service only after the shutdown time (which he or she may set). Thus a shutdown
can be unexpected only by those clients who have made no reservation.

A typical use of the reservation service would be for clients to include a reservation
request at the start of every program that uses the reserved service. The duration of
the reservation should be long enough to allow the program to complete, but short
enough to allow the operator to make a reasonably spontaneous decision to shutdown.
The state of the reservation service has two components:

expires a map from clients’ nicknames (their public identities – see Chapter 10) to
the time at which their current reservation expires; and

shutdown the shutdown time most recently set by the operator.

RS
expires : Nickname 7→ Time
shutdown : Time

Each operation requested by clients includes the three values:

client? the username of the client;

cost ! the cost of the operation; and

report ! a report indicating whether the operation succeeded or failed.

Report ::= Success | Service Error | Not Available | Too Many Clients

∆RS
RS
RS ′

client? : Client
nickname : Nickname
cost ! : Money
report ! : Report

client? ∈ domGetNickname
nickname = GetNickname(client?)

The username, client?, is supplied by the user; it is his or her private username
(as distinct from his or her public nickname). client? must be authentic, i.e.

client? ∈ domGetNickname

if the service is not to ignore the request.
The client’s nickname is calculated by the service. cost ! and report ! are returned

to the user by the service.



12.2. RESERVATION SERVICE OPERATIONS 157

12.2 Reservation service operations

Three operations are described in this section: Reserve, which is requested by clients;
SetShutdown, which is requested by the operator; and Scavenge, which is performed
by the service itself (at its discretion). The latter two operations are included here
only as an aid to the reader’s intuition.

The description of each operation can have up to four sections, titled Abstract,
Definition, External Calls and Reports.

The Abstract section gives a procedure heading for the operation, with formal
parameters, as it might appear in some programming language. The correspondence
between this procedure heading and an implementation of it in some real programming
language must be obvious and direct. Each formal parameter is given a name ending
with either ‘?’ or ‘!’. Those ending with ‘?’ are inputs, and those ending with ‘!’ are
outputs. A short description may accompany the procedure heading.

The Definition section mathematically defines the operation, by giving a schema
that includes as a component every formal parameter of the procedure heading.
Within the schema appear also subschema(s) whose components include the ser-
vice state before and after the operation (this can be more (RS , RS ′) or less (∆RS )
explicit). Any other components appearing in the schema are either local to the op-
eration (i.e. temporary) or represent values exchanged with other services (invisibly
to the client). Only the formal parameters of the procedure heading are exchanged
directly between client and service. A short description may accompany the schema.

The External Calls section lists the calls that this service may make on other ser-
vices, in order to complete the requested operation. These appear as procedure calls
which match the procedure headings given in the description of the operation called.
(These are found in the user manual for the called service.) The correspondence be-
tween formal and actual parameters is positional, with missing (i.e. irrelevant) actual
parameters indicated by commas.

The Reports section lists the possible (success or failure reporting) values that the
formal parameter report ! can assume. If such a value is followed by a predicate, it
is to suggest that the reported value would occur because that predicate is satisfied.
The predicate is therefore a hint to the cause of the report.

Reports are discussed in more detail in Section 12.3.

Reserve

Abstract

Reserve ( client? : Client;
interval? : Interval;
until! : Time;
cost! : Money;
report! : Report)

A reservation is made for a period of interval? seconds. until ! returns the expiry time
of the new reservation.

Interval == Time

A client can cancel his reservation by making a new reservation in which interval? is
zero; see Scavenge below. There is a fixed cost for making a reservation



158

ReservationCost : Money

Definition

Reserve
∆RS
interval? : Interval
until !,
now : Time

until ! = now + interval?
until ! ≤ shutdown
expires ′ = expires ⊕ {nickname 7→ until !}
shutdown ′ = shutdown
cost ! = ReservationCost

The reservation must expire before the shutdown time. The current time now is
obtained from the time service (see Chapter 11).

External Calls

Time service

GetTime (, now,, Success)

now is obtained by a successful call of GetTime. It is measured in seconds from
00:00:00 1st January 1980.

Reports The following errors may be reported.

Success
Service Error
Not Available ⇒ shutdown < now + interval?

shutdown = until !
Too Many Clients ⇒ #expires = Capacity

SetShutdown

Abstract

SetShutdown ( shutdown? : Time;
threatens! : Boolean)

The operator may set a new shutdown time. He or she is informed if the new time
threatens existing reservations; if it does, it is his or her responsibility to negotiate
with the clients affected.



12.2. RESERVATION SERVICE OPERATIONS 159

Definition

SetShutdown
RS
RS ′

shutdown? : Time
threatens! : Boolean

shutdown ′ = shutdown?
threatens! = True ⇔ (∃ expiry : ran expires • expiry > shutdown ′)
expires ′ = expires

The shutdown time is changed to the new value regardless of existing reservations.
Reservations are unaffected.

Scavenge

Abstract

Scavenge()

The service can at any time remove reservations whose expiry time has passed. This is
in fact the only way in which reservations are removed (by client, operator or service).

Definition

Scavenge
RS
RS ′

now : Time

shutdown ′ = shutdown
expires ′ ⊆ expires
(∀ removed : dom expires •

removed 6∈ dom expires ′ ⇒ expires(removed) ≤ now)

Scavenge does not change the shutdown time.
Scavenge can remove reservations, but it never makes new ones. A reservation is

removed only if its expiry time has passed.

External Calls

Time service

GetTime (, now,, Success)

now is obtained by a successful call of GetTime. It is measured in seconds from
00:00:00 1st January 1980.



160

12.3 Error reports

The report ! parameter of each operation indicates either that the operation has suc-
ceeded or suggests why it failed; in most cases, failure leaves the service unchanged.

An operation can return only the report values listed in the reports section of its
description. If it returns the value Success, it must satisfy its defining schema. If it
returns any other value, it must satisfy instead the appropriate schema below.

ServiceError ServiceError indicates an unexpected failure, which might not be
the client’s fault.

ServiceError
RS
RS ′

report ! : Report

report ! = Service Error

These are typical causes:

• service not running;

• network (hardware or protocol) failure;

• service hardware fault;

• service software error.

NotAvailable

NotAvailable
∆RS
interval? : Interval
until !,
now : Time

report ! = Not Available
shutdown < now + interval?
until ! = shutdown
θRS ′ = θRS

If the reservation cannot be made due to early shutdown, the shutdown time itself is
returned in until !. now is obtained from the time service.

TooManyClients The service has finite capacity

Capacity : N

for recording reservations. This report occurs when that capacity would be exceeded.



12.4. MODULA-2 INTERFACE 161

TooManyClients
∆RS
now : Time

report ! = Too Many Clients
#expires = Capacity
nickname 6∈ dom expires
θRS ′ = θRS

The report cannot occur if the client has a reservation (since it is overwritten by the
new one).

now is obtained from the time service.
Clients who cannot themselves make reservations might be able to rely temporarily

on the reservations of others.

12.4 Modula-2 interface

DEFINITION MODULE RI;

(* Reservation Service - Modula-2 Interface *)

FROM SVTypes IMPORT Client, Time, Interval, Money;

EXPORT QUALIFIED Report, Reserve;

TYPE Report = (Success,
ServiceError,
NotAvailable,
TooManyClients);

PROCEDURE Reserve (InClient : Client;
InInterval : Interval;
VAR OutUntil : Time;
VAR OutCost : Money;
VAR OutReport : Report);

(* reserve use of the service for InInterval, terminating at
OutUntil, otherwise return the time at which the service
becomes unavailable in OutUntil *)

END RI.



162



Part IV

TRANSACTION
PROCESSING

The chapters presented in this part were produced as part of a joint project
between IBM (UK) Laboratories at Hursley, England and the Programming Research
Group of the Oxford University Computing Laboratory into the application of formal
software specification techniques to transaction processing.

The project was initiated in response to a talk by Professor C. A. R. Hoare to the
British Computer Society [19], from which the following quotation is extracted.

I believe that the time has come to attempt to scale up the use of for-
mal mathematical methods to industrial application. This can best be
achieved by collaborative development projects between a university or
polytechnic and an industrial company or software house.

The talk was attended by Tony Kenny from IBM Hursley and this led to the initial
collaboration between Hursley and Oxford.

The initial project consisted of specifications of parts of the IBM Customer In-
formation Control System (CICS). Chapter 13 describes the work carried out. A
number of modules of the CICS command level application programmer’s interface
were specified; these include the CICS Exception Handling, which is documented
within Chapter 13, and CICS Temporary Storage, which is described in Chapter 16.
Chapter 17, on the CICS Message System, was later work not directly related to the
other papers.

The work documented here was supported by research contract between IBM
(UK) Laboratories and Oxford University and is published by kind permission of
the Company. Carroll Morgan gave much needed and appreciated critiques of the
specifications. The project was lucky to have had Rod Burstall, Tony Hoare and
Cliff Jones as consultants. Peter Collins and John Nicholls have been responsible for
the project from the IBM end and Ib Holm Sørensen was responsible for setting up
the project from the Oxford end; the work reported here owes much to his guidance
throughout the project.

For the second edition two new chapters (14 and 15) have been added to the book.
Chapter 14 provides an update on the use of Z in part of the restructuring of IBM’s
CICS. For those interested in the experience of using such methods in practice, this
chapter gives an update on one of the largest and longest running industrial projects
making use of Z.

Chapter 15 gives an overview of a more recent project undertaken at IBM Hursley
to specify the CICS Application Programming Interface. This work can be viewed as
an extension of the work presented in Chapter 13. However, it is on a larger scale.
Chapter 15 reports on the progress made on some of the problems outlined in Chapter
13.

163



164



Chapter 13

Applying formal specification
to the development of
software in industry

Ian Hayes

Abstract This chapter reports experience gained in applying formal specification
techniques to an existing transaction processing system. The system is the IBM
Customer Information Control System (CICS) and the work has concentrated on
specifying a number of modules of the CICS application programmer’s interface.

The uses of formal specification techniques are outlined, with particular reference
to their application to an existing piece of software. The specification process itself
is described and a sample specification presented.

One of the main benefits of applying specification techniques to existing software
is that questions are raised about the system design and documentation during the
specification process. Some problems that were identified by these questions are
discussed.

Problems with the specification techniques themselves, which arose in applying
the techniques to a commercial transaction processing system, are outlined.

13.1 Introduction

Oxford University and IBM (UK) Laboratories Limited are engaged in a joint project
to evaluate the applicability of formal specification techniques to industrial scale soft-
ware. The project is attempting to scale up formal mathematical methods, used so
far within a research environment, to large-scale software in an industrial environ-
ment. This chapter reports the experience gained so far in applying these techniques
to describe the application programmer’s interface of the IBM Customer Information
Control System (CICS).

Copyright c© 1985 IEEE. Reprinted, with permission, from IEEE Transactions on Software Engi-
neering, SE-11(2), pp. 169–178, February 1985.

165



166

CICS is widely used to support online transaction processing applications such as
airline reservations, stock control and banking. It can support applications involving
large numbers of terminals (thousands) and very large data bases (requiring giga-
bytes). The CICS General Information manual [30] gives the following description.

CICS/VS provides (1) most of the standard functions required by appli-
cation programs for communication with remote and local terminals and
subsystems; (2) control for concurrently running user application pro-
grams serving many online users; and (3) data base capabilities . . .

CICS is general purpose in the sense that it provides the primitives of transaction
processing. An individual application is implemented by writing a program invoking
these primitives. The primitives are similar to operating system calls, but are at a
higher level; they also provide such facilities as security checking, transaction logging,
and error recovery.

CICS has been in use since 1968, and has undergone continuous development
during its lifetime. In the original implementation, the application programmer’s
interface was at the level of control blocks and assembly language macro calls. This
is referred to as the macro-level application programmer’s interface. In 1976 a new
interface, the command-level application programmer’s interface, was introduced. It
provides a cleaner interface which does not require the application programmer to
have knowledge of the control blocks used in the implementation of the system. The
command-level interface is the subject of our work on specification.

CICS is supported on a number of IBM operating systems in such a way that
application programs written using the application programmer’s interface may be
transferred from one environment to another without recoding. In addition, the
command-level interface supports a number of programming languages: PL/I, Cobol,
Assembly language and RPG II. This is achieved by the use of a preprocessor that
translates programs containing CICS commands into the appropriate statements in
the language being used (usually a call on a CICS module). Hence the application
programmer’s interface provides a level of abstraction that hides a number of signifi-
cantly different implementations.

The command level interface is split up into a number of relatively independent
modules responsible for controlling various resources of the system. The formal spec-
ification work has so far concentrated on specifying individual modules in relative
isolation. Of the sixteen modules comprising the command-level interface, three —
temporary storage, exceptional condition handling and interval control — have been
specified. Temporary storage provides facilities for setting up named temporary stor-
age queues that may be used to communicate information between transactions or as
temporary storage by a single transaction. Exceptional condition handling provides
facilities to handle exceptions raised by calls on CICS commands in a manner similar
to PL/I condition handling. Interval control provides facilities to set up time-outs
and delays, as well as to start a new transaction at a given time and to pass data to
it.

With the large number of CICS systems around the world, the usage of the CICS
command level application programmer’s interface is on a par with many program-
ming languages. As with programming languages, it is important that the interface
be clearly specified in a manner independent of a particular implementation.



13.2. USES OF FORMAL SPECIFICATION 167

13.2 Uses of formal specification

The work reported in this chapter deals with the specification of parts of an existing
system. Before considering the benefits of specification when applied to existing
software we will briefly review the benefits of specification in general. (For a more
detailed discussion see [58].) In software development a formal specification can be
used by

designers to formulate and experiment with the design of the system,

implementors as a precise description of the system being built, particularly if
there is more than one implementation,

documentors as an unambiguous starting point for user manuals, and

quality control for the development of suitable validation strategies.

Using a specification, the designer of a system can reason about properties of the
system before development starts; and during development, formal verification that
an implementation meets its specification can be carried out.

When an existing system is being specified there are both short- and long-term
benefits. In the short term, performing the specification

• uncovers those parts of the existing manuals that are either incomplete or in-
consistent; and

• gives insights into anomalies in the existing system and can suggest ways in
which the system could be improved.

In the longer term the specification can be used

• for reimplementation of all or part of the system;

• as a basis for discussing and developing specifications for changes or additions
to the system; and

• to provide a model of the functional behaviour of the system suitable for edu-
cating new staff.

Reimplementation may involve a new machine architecture, programming lan-
guage or operating system, or a restructuring to take advantage of multiprocessor or
distributed systems. As the specification is implementation independent, it provides
a suitable starting point for each of the above alternatives.

When changes or additions to the system are to be made, new specifications can
be developed with reference to the previous specification. These developments will
give insights into the effect of the changes and their interaction with existing parts of
the system.

As the specification is a formal document it provides a more precise description
for communication between the designers than natural language descriptions. This
should help to reduce misunderstandings among the people involved.

Experimentation with specification provides a quicker and cheaper method of
investigating a number of alternative changes to the system than implementing the
changes. On the other hand, because the specification is implementation independent,
it cannot provide direct answers to questions of how difficult the changes will be to



168

implement, or their impact on the performance of the system. However, as it is at a
high level of abstraction it can give a better insight into the interaction of changes
with other components of the system; it is just these high-level interactions which get
lost in informal specifications and in the detail of implementation.

While working predominantly at a more abstract level the specifiers must be expe-
rienced in implementation and should be aware of the implementation consequences
of their decisions. Those parts of the specification for which the implementation con-
sequences are unclear should be further investigated before detailed implementation
is begun.

13.3 The specification process

The starting point for our specification work was the CICS command-level application
programmer’s reference manual [29]. The style of this manual is a combination of
formal notation describing the syntax of commands and informal English explanations
of the operation of the commands. We developed our initial specification of a module
of the system by reference to the corresponding section of the manual. The main goal
was to come up with a mathematical model of the module that is consistent with its
description in the manual. This involves forming a crude initial model of the module
and extending it to cover operations (or facets of operations) not initially dealt with,
or refining or redesigning the specification as inconsistencies are discovered between
it and the manual.

In attempting the initial specification, questions arose that were not satisfactorily
answered by the manual. At this stage, a list of questions was prepared, and an expert
on that module of the system (along with the source code) was consulted. Questions
can arise for the following reasons:

• the manual is incomplete or vague;

• the manual is not explicit as to whether possible special cases are treated nor-
mally or not;

• the manual is itself inconsistent; or

• the chosen mathematical model is inconsistent with the manual in some small
way: either the model or the manual is incorrect.

As the system has been in use for some time the answers to the more straight-
forward questions about its operation have already found their way into the manual.
Hence most questions that arose in the specification process were rather subtle and
required reference to the source code of the module to be satisfactorily answered.
Some of the questions led to inconsistencies being discovered between the manual
and the implementation. These inconsistencies were either errors in the manual or
bugs in the implementation. Which way they should be classified depends on the
original intent of the designer.

The specification was also given to people experienced in formal specification who
gave comments on its internal consistency and style, and who suggested ways in which
the specification could be simplified or improved. They were also given a copy of the
relevant section of the manual to read after they had understood the specification,
and were asked to point out any inconsistencies they discovered between it and the
specification.



13.4. A SAMPLE SPECIFICATION 169

The answers to questions and the review of the specification led to a revision of
the specification, which led to further questions and further review, and so on.

13.3.1 Notation

The style of the specification document is a mixture of formal Z and informal ex-
planatory English. The formal parts of the specification, given in Z, are surrounded
in the text by boxes so that they stand apart from the explanatory surrounds and
may be more easily found for reference purposes. To make a specification readable,
both formal and informal parts are necessary; the formal text can be too terse for
easy reading and often its purpose needs to be explained, while the informal natural
language explanation can more easily be vague or ambiguous and needs the precision
of a formal language to make the intent clear. The informal text provides the link
between formality and reality without which the formal text would just be a piece of
mathematics. To create a good specification the structuring of the specification and
the composition and style of the informal prose are as important as the formal text.

The aim is to provide a specification at a high level of abstraction and thus avoid
implementation details. The specification should reveal the operation of the system
a small portion at a time. These portions can be progressively combined to give a
specification of the whole. This style of presentation is preferred to giving a mono-
lithic specification and trying to explain it; the latter can be rather overwhelming
and incomprehensible because there are too many different facets to understand at
once. It is hoped that by giving the specification in small portions each piece can
be understood, and when the pieces are put together the understanding of the parts
that has already been gained can lead more easily to an understanding of the whole.

For more complex specifications that are developed via numerous small steps,
understanding the whole can be quite difficult, because one needs to remember the
function of all the parts and understand the way in which they are combined. In
such cases it can be useful to provide both a portion by portion development of
the specification and an expanded monolithic specification as well. The latter is
more assailable after one has been through a piece-by-piece development and has an
understanding of its various components.

13.4 A sample specification

As a sample of the type of specification produced we will look in detail at the specifica-
tion of exceptional condition handling within CICS. The exception check mechanisms
of CICS are similar to those provided by PL/I [28]. This module was chosen for
exposition because it is one of the smaller modules in the system. The manual entry
on which the specification was initially based is given in Appendix 13.8. The spec-
ification given here is the final product of the specification process described in the
previous section.

The syntax of the CICS commands depends, of course, on the environment in
which they are written. Our notation below is intended to be uncommitted, but
explicit enough to indicate exactly which command is meant.



170

13.4.1 Exceptional conditions specification

Exceptional conditions may arise during the execution of a CICS command. A trans-
action may either set up an action to be taken on a condition by using a Handle
Condition command, or it may specify that the condition is to be ignored by using
an Ignore Condition command. If a condition has been neither handled nor ignored,
then the default action for that condition is used. For example, to handle condition
x with action y we can use

Handle Condition(c = x , a = y)

where the keyword parameter ‘c =’ gives the condition and ‘a =’ gives the action.
To ignore condition z we use

Ignore Condition(c = z )

We introduce the set CONDITION , which contains all the exceptional conditions
that may occur, and also contains two special conditions:

success the condition that indicates that a command completed normally, and

error this is not a condition that can arise from the execution of a command; rather,
it provides a mechanism for providing a catchall error handler for conditions that
are not explicitly handled.

We do not list all the possible exceptional conditions here.

CONDITION ::= success | error | . . .

We also introduce the set ACTION , which contains all actions that could be
taken in response to some exceptional condition. The exact nature of ACTION is
not discussed in detail here. For each programming language supported by CICS it
has a slightly different meaning, but for all of the languages an action is represented by
a label which is given control. There are four special actions used in this specification:

nil indicating a normal return (i.e. no action);

abort the action that abnormally terminates a transaction;

wait indicating that the transaction is to wait until the operation can be completed
normally (e.g. wait until space becomes available); and

system used to simplify the specification of the Handle Condition command.

ACTION ::= nil | abort | wait | system | . . .

13.4.2 The state

The state of the exception controlling system can be defined by the following schema:

Exceptions
Handler : CONDITION 7→ ACTION

Handler(success) = nil



13.4. A SAMPLE SPECIFICATION 171

The mapping Handler gives the action to be taken for those conditions that have
been set up by either an Ignore Condition or Handle Condition command. The
handling action for condition success is always nil (i.e. return normally). The action
for other conditions is determined by some fixed function

Default : CONDITION → ACTION

Default(error) = abort ∧
ran(Default) = {nil , abort ,wait}

The default action for the special condition error is to abort and the only default
actions are nil , abort , and wait .

The initial state of the exception handling system for a transaction is given by the
following schema:

Initial
Exceptions

Handler = {success 7→ nil}

The initial state of the handler is to return normally if the operation completes
successfully. As an example, if starting in the initial state the commands

Handle Condition(c = x , a = y)
Ignore Condition(c = z )

are executed, then the final state will satisfy

Handler = {x 7→ y , z 7→ nil , success 7→ nil}

The Handle Condition command sets up a mapping from condition x to action y and
the Ignore Condition command maps condition z onto the nil action.

13.4.3 The operations

The two operations, Handle Condition and Ignore Condition, work directly on the
above state. We describe a state change using the following schema, which is called
‘∆Exceptions’:

∆Exceptions
Exceptions
Exceptions ′

Exceptions represents the state of the exception handling system before an operation
and Exceptions ′ the state after.

The operation Handle Condition is used to set up the action, a?, to be performed
on a particular exceptional condition, c?. It is defined by the following schema:

HandleCondition
∆Exceptions
c? : CONDITION
a? : ACTION

c? 6= success ∧ a? 6∈ {nil , abort ,wait} ∧
Handler ′ = Handler ⊕

{c? 7→ (if a? = system then Default(c?) else a?)}



172

The first predicate gives the precondition for the operation: the special condition
success cannot be handled, and the special actions nil , abort and wait cannot be
given as handling actions. The second predicate describes the effect of the operation:
if the action to be set up is specified as system, then, instead, the default action for
the given condition will be set up as the handler for that condition; otherwise the
supplied action, a?, will be set up. For example, if the command

Handle Condition(c = x , a = system)

is executed in the initial state and Default(x ) = wait , the resulting state will satisfy

Handler = {x 7→ wait , success 7→ nil}

The actual Handle Condition command accepts a set of condition–action pairs,
rather than just a single pair as shown above. However, the effect of the command
for each pair is as described above, so we will not bother to show the full command.
Similarly, the Ignore Condition command accepts a set of conditions, but we only
bother to show its effect for a single condition here.

The operation to specify that an exceptional condition is to be ignored is given
by the following schema:

IgnoreCondition
∆Exceptions
c? : CONDITION

c? 6= success
Handler ′ = Handler ⊕ {c? 7→ nil}

The special condition success cannot be specified in an IgnoreCondition command.
The action to be taken on an ignored condition is to return normally (i.e. nil).

13.4.4 Exception checking

Exception handling can take place on any CICS command except HandleCondition
and IgnoreCondition themselves. We need to describe the exception checking that
takes place on all other commands. The exception checking process determines the
action, a!, to be taken on completion of a command. The value of a! is dependent on
the condition, c?, returned by the command, and the current state of the exception
handling mechanism. In addition, any command may specify whether or not all
exceptions are to be handled for the execution of just that command. In describing
the checking process we include the Boolean variable handle? to indicate this. The
following defines the (complex) exception checking mechanism that is included in the
definition of each operation (other than Handle Condition and Ignore Condition):



13.5. QUESTIONS RAISED 173

ExceptionCheck
Exceptions
handle? : Boolean
c? : CONDITION
a! : ACTION

a! = if handle? = False then nil
else if c? ∈ domHandler then Handler(c?)
else if Default(c?) 6= abort then Default(c?)
else if error ∈ domHandler then Handler(error)
else abort

If exceptions are not being handled for the command (handle? = False) the action
is to return normally; otherwise the action is determined from the exception hand-
ler. If the condition, c?, has been ignored or handled (including the case where the
handle action was specified as system) then the corresponding handler action is used.
Otherwise, if the default action for the condition is not abort the default is used,
else if the special condition error is handled its handler action is used, otherwise the
action is abort .

13.5 Questions raised

The questions raised about the system during the specification process are an impor-
tant benefit of the process. They indicate problems either in the documentation of
the system or in its logical design, and provide those responsible for maintaining the
system with immediate feedback on problem areas.

In writing a formal specification one is creating a mathematical model of what is
being specified, and in creating such a model one is encouraged to be more precise than
if one were writing in a natural language. Because of the precision required, questions
are raised during the specification process that are not answered by referring to the
less formal manual. In fact, the task of formal specification is demanding enough to
raise most of the questions about the functional behaviour of the system that would
be raised by an attempt to implement it. The effort required for a specification,
however, is considerably less than that required for an implementation.

We now discuss some of the questions that were raised during the specification
work on CICS modules. It is interesting to note that most of the questions raised
required the expert on the module to refer to the source code to give a conclusive
answer. We begin with the questions about exceptional conditions, then a question
about interval control, and finally a question about the interaction between temporary
storage and exceptional conditions.

13.5.1 Exceptional conditions

We first list some questions that were raised during the specification of exceptional
condition handling and then examine one of the more interesting questions in detail.
All of these questions were resolved in producing the specification given in the previous
section.

1. What is the range of possible default actions?



174

2. Is the default action for a particular condition the same for all commands that
can raise that condition?

3. Can the special condition error be ignored?

4. Is the action for condition error only used if the default system action on a
condition is abort?

5. If executed from the initial state, does the sequence

Handle Condition(c = x , a = y)
...

Handle Condition(c = x , a = system)

return the handler to the initial state?

The reader is invited to try to answer these questions from the manual entry given
in Appendix 13.8 and then from the specification given in Section 13.4.1. We now
look in detail at question 5 above. It shows a subtle operation of the exceptional
conditions mechanism that is counter-intuitive.

In an earlier model of the Handle Condition command the new value for the
Handler ′ in the case when a? = system was

Handler ′ = {c?} −C Handler

That is, if the action specified as an input is system then the entry for the condition
c? is removed from the handler (c? 6∈ domHandler ′). In the final model the new value
of the Handler ′ in this case is

Handler ′ = Handler ⊕ {c? 7→ Default(c?)}

In this version, if the action is system the entry in the handler for condition c? is set
up to be Default(c?) (therefore c? ∈ domHandler ′).

To see the effect of the difference we need to look at the Exception Check mech-
anism given in Section 13.4.1. If we use the second line above, then the action when
the exception c? occurs is Default(c?) (assuming handle? is true). In the earlier
model, however, the action also depends on whether a handler has been set up for
the special condition error : the action is Default(c?) unless Default(c?) is abort and
error ∈ domHandler , in which case the action is Handler(error). The difference be-
tween the two versions is subtle and the reader is encouraged to study the definitions
of Handle Condition and Exception Check in order to understand the difference.

The exception check mechanism is quite complex. None of the people experienced
with CICS who were questioned about exceptional condition handling was aware
of the problem detailed above. It is interesting to conjecture why this is so. The
most plausible explanation is that the operation of the exception check mechanism is
counter-intuitive. For example, the sequence given in question 5, i.e.

Handle Condition(c = x , a = y)
...

Handle Condition(c = x , a = system)

does not leave the exceptional condition handler in its initial state if the default action
for condition x is abort and a handler has been set up for the special condition error ;



13.5. QUESTIONS RAISED 175

before the above sequence the error handler is used on an occurrence of condition x ,
but after, the action Default(x ) (i.e. abort) is used on an occurrence of x .

If the above sequence did restore the exception condition handler to its initial
state, then it could be used to handle condition x temporarily for the duration of
the statements between the Handle Condition commands. This form of operation is
more what those using the exceptional conditions module expect.

The Exception Check mechanism is so complex that most readers of either the
manual or the specification given in the previous section do not pick up the above
subtle operation unless it is explicitly pointed out in some form of warning. This is
probably a good argument in favour of revising exception handling so that it becomes
more intuitive.

The discussion about question 5 above also raises the point that a specification
can be incorrect. This case shows one advantage of getting a second opinion on the
specification and how it compares with the manual, from a person experienced in
formal specification. It is important that the reviewer should read the specification
before reading the manual. The reviewer’s mental model of the system is thus based
on the mathematical model in the specification. When the reviewer reads the manual
looking for inconsistencies with the specification, any questions that arise can be an-
swered by consulting the precise model given in the specification. This contrasts with
the person writing the specification who forms a model from the manual and often
has to consult other sources to answer questions that arise. Getting a second opinion
on the specification and how it compares to the manual is an important ingredient
for increasing confidence in the accuracy and readability of the specification.

13.5.2 Interval control

As another example we consider one of the problems raised during the specification of
the CICS interval control module. Interval control is responsible for operations that
deal with the interval timer. The operations provided by interval control can be split
logically into two groups: those concerned with starting new transactions at specified
times, and those concerned with time-outs and delays.

In specifying a module of the system we define the state components of the module
(in the case of exceptional conditions there was only one state component, Handler).
The state components of interval control can be split into two groups that are con-
cerned respectively with the two groups of interval control operations. For the most
part, operations only refer to or change components of the corresponding state. One
exception is the command Start (to start a new transaction) which in some circum-
stances changes the time-out state components. This can be considered to be a
carefully documented anomaly of the current implementation. Both the implementa-
tion and documentation could be simplified if the Start command did not destroy the
current time-out. More importantly, removal of this interaction would lead to a more
useful time-out mechanism, because time-outs would not be affected by a transaction
start.

This anomaly is interesting because it points out an unwanted interaction between
different parts of a module. In attempting to write the specification this interaction
stood out because it involved the Start operation using the time-out state. This form
of interaction between parts of modules tends to be pinpointed in the formal speci-
fication process because the offending operations require access to state information
other than that of the part to which they belong.



176

Two further facts reinforce the view that the current operation of the Start com-
mand is not the most desirable: if the new transaction is to be started on a different
computer system to the one issuing the Start command, or if the start is protected
(from the point of view of recovery on system failure), then the start does not destroy
the current time-out. Ideally we do not want to have to specify distributed system
and recovery effects individually with each operation. We would like to add extra
levels of abstraction to describe these effects for the whole system.

13.5.3 Interaction between modules

As an example of an interaction between two CICS modules we consider an interaction
between exceptional conditions and temporary storage. When temporary storage is
exhausted it can raise the exceptional condition nospace. This is processed in the
normal way if it has been explicitly handled; the default action, however, is to wait
until space becomes available.

Thus the specification of the temporary storage operations that can lead to a
nospace exception require access to the exceptional conditions state to determine
whether or not the nospace exception is handled; if it is handled it can occur, but if it
is not, it cannot. These operations would more simply be specified (and implemented)
if they had an extra parameter indicating whether or not to wait. It is interesting to
note that, in the implementation, such temporary storage commands are transformed
into a call with an additional parameter after the exception handling state has been
consulted. It is also interesting that these commands were not correctly implemented
if the nospace exception was ignored.

Interactions between modules of the system are pinpointed during the formal spec-
ification process (just as they would be in an implementation) because an operation
from one module needs access to the state components of another. Any such interac-
tions discovered during the specification process should be examined closely as they
may indicate a breakdown in the modular structure of the system.

13.6 Problems with specification

In this section we examine the problems encountered in applying the formal specifica-
tion techniques. This is in contrast to the previous section, in which we concentrated
on the system being specified. The problems encountered in applying specification
techniques can be split into the following categories:

• communication problems between the people involved;

• the general problem of achieving the ‘right’ level of abstraction in the specifica-
tion; and

• more technical problems related to the particular specification technique.

13.6.1 Communication problems

As a specification group from a university working with a commercial development
laboratory we faced a communications problem. Each party has its own language: the
specifiers use the language of mathematics based on set theory, while the developers
use terminology and concepts specific to the system which they are developing. The



13.6. PROBLEMS WITH SPECIFICATION 177

communication problem is in both directions. This requires that each party learn the
language of the other.

In performing a formal specification the specifier needs to understand what is being
specified in order to be able to develop a mathematical model of it. To understand the
system it is necessary to read manuals and consult experts, both of which use IBM
and CICS terminology. Once a specification is written, the specifier would like to get
feedback on its suitability from these same experts. This requires that they need to
be educated in mathematics to a level at which they can understand a specification.
At the current stage of the project the educational benefit has been more to the
advantage of the specifiers learning about the system. In performing a specification
of part of a system the specifier, of necessity, becomes an expert on the functional
behaviour of that part (but not on the implementation of the part).

13.6.2 The right level of abstraction

In this context ‘right’ means that a piece of specification conveys the primary function
of the part of the system it specifies and is not unduly cluttered with details. It
is most important that a specification should not be biased towards a particular
implementation. However, getting the right specification also involves choosing the
most appropriate model and structuring the specification so that the minute details
of the specified object do not obscure the primary function.

We can use hierarchical structuring to achieve this. Details of some facet of a
component can be specified separately and then that specification can be referred to
by the higher level specification. Different cases of an operation (e.g. the normal
case and the erroneous case) can be specified independently and combined to give a
specification of the whole.

The structure of a good specification may not correspond to the structure one
may use to provide an efficient implementation. In specification one is trying to
provide a clear logical separation of concerns, while in implementation one may take
advantage of the relationships between logically separate parts to provide an efficient
implementation of the combined entity. The intellectual ability required of a good
specifier is roughly equivalent to that of a good programmer; however, the view taken
of the system must be different.

13.6.3 Technical problems

The following technical specification problems were discovered in applying formal
specification techniques to CICS:

• putting the module specifications together to provide a specification of the sys-
tem as a whole;

• specifying parallelism;

• specifying recovery on system failures; and

• specifying distributed systems.

We shall briefly discuss each of these in turn.



178

Putting modules together Currently, three modules out of the sixteen modules
that form the application programmer’s interface have been specified and we now feel
we have enough insight into the system to consider the problem of putting the module
specifications together. Each module has state components and a set of operations
that work on those state components. Putting the modules together amounts to
combining the states together to form the state of the system, and extending the op-
erations of the modules to operations on the whole system. The problems encountered
in putting modules together were as follows:

• avoiding name clashes when the modules were combined;

• specifying the effect on the whole system state of an operation defined within a
module of the system; and

• coping with situations in which an operation of one module refers to state
components of another module.

Parallelism In our current specifications the operations are assumed to be atomic
operations acting on the state of the system. We have a sufficient underlying theory to
allow one to reason formally about a single sequential transaction. An area for future
research is to extend the theory to allow reasoning about the interactions between
parallel processes. The current specifications will still be used but they will need to
be augmented with additional specifications which constrain the way in which the
parallel processes interact.

Recovery An important part of a transaction processing system is the mechanism
for recovery on failure of the system. The current specifications do not address the
problem of recovery. Again we would like to augment the current specifications so that
recovery can be incorporated without requiring the existing part of the specification
to be rewritten.

Distributed systems A number of CICS systems may cooperate to provide ser-
vices to users. The main facility provided within CICS to achieve this is the ability
to execute certain operations or whole transactions on a remote system. While the
individual operation specifications could be augmented to reflect remote system exe-
cution, it was thought better to wait until we had a specification of the system and
extend that to a distributed system. To reason effectively about a distributed system
we need to be able to reason about parallelism.

13.7 Conclusions

Formal specification techniques have been successfully applied to modules of an ex-
isting system and as an immediate benefit have uncovered a number of problems in
the current documentation as well as flaws in the current interface design. In the
longer term the formal specifications should provide a good starting point for speci-
fying proposed changes to the system, a more precise description for educating new
personnel, and a basis for improved documentation.

In part the reason we have been successful in applying our specification techniques
is that the modular structure of CICS is quite good, and we have been able to take
advantage of this by concentrating on individual modules in relative isolation.



13.8. APPENDIX: EXCEPTIONAL CONDITIONS MANUAL 179

The main short-term benefits that are obtained by applying formal specification
techniques to existing software are the questions that are raised during the specifi-
cation process. They highlight aspects of the system that are incompletely or am-
biguously described in the manual, as well as focusing attention on problems with its
structure, for example, undesirable interactions between modules.

In the longer term a formal specification provides a precise description which can
be used to communicate between people involved with the system. The specification
is less prone to misunderstanding than less formal means of communication, such as
natural language or diagrams. It can be used as a basis for a new specification which
incorporates modifications to the original design, and it provides an excellent starting
point for people responsible for improving the documentation. (In another group at
Oxford work on incorporating formal specifications into user manuals is being done
by Roger Gimson and Carroll Morgan [43].)

The time required to specify a module of the system varied from about 4 weeks
for Exceptional Conditions to 12 weeks for Interval Control. The time required was
related to the size of the module (the number of operations, etc.) and also to the
number and severity of problems raised about the behaviour of the module. The
size of a module specification (in pages) turned out to be roughly comparable to the
size of the manual entry for the module. The specification sizes ranged from 4 pages
(handwritten) for Exceptional Conditions to 16 pages for Interval Control.

The difficulties encountered with the specification process itself were the language
gap between university and industry, and the problem of achieving the right level
of abstraction. There were also a number of more technical specification problems
that arose when applying the techniques: the problem of putting together module
specifications to provide a specification of the system as a whole, specifying par-
allelism, specifying recovery on system failure, and specifying distributed systems.
These problems are areas for further research.

Acknowledgements I would like to thank IBM for their permission to publish
this chapter and reproduce part of one of their manuals as an appendix. Several
members of the IBM Development Laboratory at Hursley, England assisted the author
to understand some parts of CICS; of special note are Peter Alderson, Peter Collins
and Peter Lupton.

This work has benefited from consultations with Tony Hoare, Cliff Jones and
Rod Burstall. Tim Clement was responsible for the initial specification of temporary
storage and exceptional conditions. Paul Fertig, Roger Gimson, John Nicholls and
Bernard Sufrin gave useful comments on this chapter. Finally, I would like to express
my gratitude to Carroll Morgan and Ib Holm Sørensen for their help as reviewers of
the specifications, and for their instruction in specification techniques.

13.8 Appendix: exceptional conditions manual

The following is an extract of the manual entry for exceptional conditions taken from
[29].

Exceptional conditions may occur during the execution of a CICS/VS command
and, unless specified otherwise in the application program by an IGNORE CONDI-
TION or HANDLE CONDITION command or by the NOHANDLE option, a default
action for each condition will be taken by it. Usually, this default action is to termi-
nate the task abnormally.



180

However, to prevent abnormal termination, an exceptional condition can be dealt
with in the application program by a HANDLE CONDITION command. The com-
mand must include the name of the condition and, optionally, a label to which control
is to be passed if the condition occurs. The HANDLE CONDITION command must
be executed before the command which may give rise to the associated condition.

The HANDLE CONDITION command for a given condition applies only to the
program in which it is specified, remaining active until the associated task is termi-
nated, or until another HANDLE CONDITION command for the same condition is
encountered, in which case the new command overrides the previous one.

When control returns to a program from a program at a lower level, the HANDLE
CONDITION commands that were active in the higher-level program before control
was transferred from it are reactivated, and those in the lower-level program are
deactivated.

Some exceptional conditions can occur during the execution of any one of a number
of unrelated commands. For example, IOERR can occur during file-control opera-
tions, interval-control operations, and others. If the same action is required for all
occurrences, a single HANDLE CONDITION IOERR command will suffice.

If different actions are required, HANDLE CONDITION commands specifying
different labels, at appropriate points in the program will suffice. The same label can
be specified for all commands, and fields EIBFN and EIBRCODE (in the EIB) can be
tested to find out which exceptional condition has occurred, and in which command.

The IGNORE CONDITION command specifies that no action is to be taken if
an exceptional condition occurs. Execution of a command could result in several
conditions being raised. CICS/VS checks these in a predetermined order and only
the first one that is not ignored (by an IGNORE CONDITION command) will be
passed to the application program.

The NOHANDLE option may be used with any command to specify that no action
is to be taken for any condition resulting from the execution of that command. In this
way the scope of the IGNORE CONDITION command covers specified conditions for
all commands (until a HANDLE CONDITION for the condition is executed) and the
scope of the NOHANDLE option covers all conditions for specified commands.

The ERROR exceptional condition

Apart from the exceptional conditions associated with individual commands, there
is a general exceptional condition named ERROR whose default action also is to
terminate the task abnormally. If no HANDLE CONDITION command is active
for a condition, but one is active for ERROR, control will be passed to the label
specified for ERROR. A HANDLE CONDITION command (with or without a label)
for a condition overrides the HANDLE CONDITION ERROR command for that
condition.

Commands should not be included in an error routine that may give rise to the
same condition that caused the branch to the routine; special care should be taken
not to cause a loop on the ERROR condition. A loop can be avoided by including a
HANDLE CONDITION ERROR command as the first command in the error routine.
The original error action should be reinstated at the end of the error routine by
including a second HANDLE CONDITION ERROR command.



13.8. APPENDIX: EXCEPTIONAL CONDITIONS MANUAL 181

Handle exceptional conditions

HANDLE CONDITION

HANDLE CONDITION condition [ (label) ]
[ condition [ (label) ] ]
...

This command is used to specify the label to which control is to be passed if an
exceptional condition occurs. It remains in effect until a subsequent IGNORE CON-
DITION command for the condition encountered. No more than 12 conditions are
allowed in the same command; additional conditions must be specified in further
HANDLE CONDITION commands. The ERROR condition can also be used to
specify that other conditions are to cause control to be passed to the same label. If
‘label ’ is omitted, the default action for the condition will be taken.

The following example shows the handling of exceptional conditions, such as
DUPREC, LENGERR, and so on, that can occur when a WRITE command is used to
add a record to a data set. DUPREC is to be handled as a special case; system default
action (that is, to terminate the task abnormally) is to be taken for LENGERR; and
all other conditions are to be handled by the generalized error routine ERRHANDL.

EXEC CICS HANDLE CONDITION
ERROR(ERRHANDL)
DUPREC(DUPRIN)
LENGERR

If the generalized error routine can handle all exceptions except IOERR, for which
the default action (that is, to terminate the task abnormally) is required, IOERR
(without a label) would be added to the above command.

In an assembler-language application program, a branch to a label caused by an
exceptional condition will restore the registers in the application program to their
values at the point where the EXEC interface program is invoked.

In a PL/I application program, a branch to a label in an inactive procedure or in an
inactive begin block, caused by an exceptional condition, will produce unpredictable
results.

Handle condition command option

condition [ (label) ] ‘condition’ specifies the name of the exceptional condition,
and ‘label ’ specifies the location within the program to be branched to if the
condition occurs. If this option is not specified, the default action for the con-
dition is taken, unless the default action is to terminate the task abnormally,
in which case the ERROR condition occurs. If the option is specified without a
label, any HANDLE CONDITION command for the condition is deactivated,
and the default action taken if the condition occurs.

Ignore exceptional conditions

IGNORE CONDITION



182

IGNORE CONDITION condition
[ condition ]
...

This command is used to specify that no action is to be taken if an exceptional
condition occurs. It remains in effect until a subsequent HANDLE CONDITION
command for the condition is encountered. No more than 12 conditions are allowed
in the same command; additional conditions must be specified in further IGNORE
CONDITION commands. The option ‘condition’ specifies the name of the exceptional
condition that is to be ignored.



Chapter 14

The use of Z in the
restructure of IBM CICS

Steve King

Abstract In April 1992, Oxford University Computing Laboratory and IBM (UK)
Laboratories Ltd were joint winners of a Queen’s Award for Technological Achieve-
ment, for the use of the Z notation in the development of a transaction processing
system. This chapter describes the work which led to this award: how Z was intro-
duced into the development process at IBM Hursley, the changes to the process which
were then possible, and the results obtained, in terms of numbers of errors reported.

14.1 Introduction

IBM (UK) Laboratories Ltd and Oxford University have been engaged in a joint
research project since 1981. The aim of the project is to investigate the applicability
of formal specification techniques to industrial scale software. Earlier results from
this project have been reported in [8, 17, 67]; this chapter continues the story. We
relate how the descriptive work of [17] was followed by the use of Z in the actual
development of code, and the improvements in quality which resulted.

The next chapter (Chapter 15) describes how a more recent project has built on
the work reported in [17] to give a formal description of a large part of the CICS
Application Programming Interface (API).

14.2 The CICS program product

CICS (Customer Information Control System) is the main IBM System/370 online
transaction processing system. It is widely used throughout the world, with ap-
plications including banking, airline reservations and insurance. CICS can support
installations with large databases being accessed by many terminals. Descriptions of
CICS can be found in [27] and [68]. CICS was originally developed in 1968, and it now

Copyright c© 1992 International Business Machines Corporation.

183



184

consists of over 800,000 lines of code, some written in System/370 Assembler language
but most written in an IBM internal systems programming language (PLAS). Since
1968, CICS has been continuously developed and extended. The product lifecycle is
such that a new release is produced approximately every two years, usually maintain-
ing the behaviour of previous releases but providing more functionality. Since the
period between planning and release of a new version is longer than two years, there
are several releases being worked on at Hursley at any one time.

Because of its long history, involving adding functionality to an already existing
system, it is not surprising that, by 1982, the internal structure of the CICS program
itself had become somewhat complicated. It was therefore decided to restructure and
rewrite part of the CICS program, using Z to provide formal specifications of the new
code that was to be written. In the event, Z was used on only some of the new code
(approximately 14 per cent), but this still amounted to several tens of thousands of
lines of code. This work is described in this chapter.

It should be noted that the success of the project described here is due to many
people: a list of the main participants may be found at the end of the chapter.

14.3 Early experiments

As we mentioned above, by 1982 there was general agreement in the CICS Technical
Office on the need for internal restructure and rewriting of the CICS product. This
was scheduled to be a part of CICS/ESA Version 3 Release 1. There was also a
growing interest in the use of formal specification techniques. Professor C. A. R.
Hoare of the Oxford University Programming Research Group (PRG) had suggested
that the time was right to see whether these techniques could be successfully used on
industrial-scale problems [20]. Thus the scene was set for a joint research contract
between IBM Hursley and the PRG to investigate these mathematical methods of
developing software. Until then, the PRG had only been able to apply them to small
and medium-sized examples, so they were interested to see whether the methods
would scale up to industrial problems.

The first stage in the joint research project involved the PRG researchers working
on case studies. Specifications of several small program modules and parts of the API
were produced (some appear in this volume – see Chapter 13).

The primary objective of IBM’s preliminary work on formal specification was to
decide on the notation to be used. Two possibilities were considered: Common Design
Language (CDL) and Z. CDL was an internal IBM design language which has many
features derived from high-level programming languages. The first case studies were
written in both CDL and Z, so that comparisons could be made. It was eventually
decided to concentrate on Z, rather than CDL, because it seemed to be possible to
write Z specifications which were more elegant than their CDL counterparts, and
more easily captured the precise requirements. It was also felt that the mixture of
formal statements and explanatory English text would make the Z documents more
‘acceptable’ to the many non-experts in formal methods who would have to come into
contact with them.

While the Oxford researchers were working on the case studies, there were also
a few Hursley designers who were experimenting with Z in their day to day work.
While there was as yet no official policy on Z, there was a real interest in the use of
formal methods. The case study work was important for several reasons:



14.4. THE DECISION TO USE Z 185

• It enabled the researchers to learn about the IBM culture. They spent a con-
siderable amount of time at Hursley, attending seminars and discussion sessions
on the internal structure of CICS. This greatly improved communications at
later stages in the project, when the researchers were advising designers who
perhaps had some problem in expressing a requirement in the formal notation,
or could not see how to model a particular structure: the researchers were then
able to concentrate on the problem, rather than needing lengthy explanations
of its background.

• It also meant that there was a resource available to the IBM developers, which
contained examples from a problem domain that was familiar to them. In some
cases, these case studies were used as templates on which to base the ‘real’
specifications which were written later. They were also useful as education
material.

It should be noted that the emphasis at this time in the use of Z was on spec-
ification, rather than development, on recording requirements at a suitable level of
abstraction, rather than on how to produce designs and code to implement those
requirements. Although some work had been done on Z and refinement, it was still
at a theoretical level, rather than being practically useful. However, the CICS staff
decided that it would still be worth introducing formal methods into the development
process, even if it was only as a notation for recording specifications and designs. It
was recognised that further work was needed on the practicalities of applying formal
or rigorous development techniques in an industrial environment.

14.4 The decision to use Z

The start of the second stage of the project was marked by the decision, in 1984, by the
CICS development managers to accept a recommendation from the CICS Technical
Office that Z should be used on (at least some of) the next release. This decision
brought about some changes to the development process which we will now describe.

Prior to 1984, there was already a well-established development process in place in
CICS development – the IBM programming process architecture, which is described
in [51]. The development process is divided into 13 stages (see Figure 14.1), and there
are well-defined criteria for progressing from one stage to the next, involving formal
reviews and inspections. Before the introduction of Z, specifications (at the PLD
stage) were written in English prose, and designs (at CLD and MLD) were written
in a combination of pseudocode and prose. It was decided to use Z for recording
specifications and high-level designs, and to use some other notation for lower-level
designs (see below). The most obvious change in the process which came about
because of the use of Z was the introduction of another inspection. Prior to the use
of Z, there were inspections at the CLD and MLD stages (known as I0 and I1). After
the introduction of Z into the process from the PLD stage on, it was felt that it would
be valuable to have an inspection at the end of the PLD stage: this became known
as DR0. Since there was now a formal document at this stage which it was possible
to inspect, it seemed a good idea to do so, in order to catch any possible errors as
early as possible.

There still remained a decision to be taken about what notation should be used
for lower-level designs. This notation was important because it had to bridge the
gap between the state-based descriptions of the high-level design and the code which



186

Family Stage Acronym Inspection

Requirements Systems requirements and design REQ
Product requirements and design

Design Product level design PLD DR0
Component level design CLD I0
Module level design MLD I1

Implementation Code CODE
Unit test UT

Testing Functional verification test FVT
Product verification test PVT
System verification test SVT

Package and Package and release ISD
validate Early support program ESP

General availability GA

Figure 14.1: The thirteen stages of the IBM programming process architecture, and the
families into which they can be grouped

was to implement those designs. After several experiments, it was decided to use
Dijkstra’s language of guarded commands [10, 11], because of its simplicity and sound
mathematical foundations, which meant that, at some future date, it might be possible
to bring the ideas of formal refinement and proof into the development process. It was
also significant that there was a textbook available, which introduced the notation
and gave many examples of its use [14]. By a happy coincidence, the book’s author,
David Gries, was on sabbatical leave at Oxford at the time, and he was invited to visit
Hursley to give a seminar on program development, using material from his book.
This was valuable in showing the practical application of the method.

In summary, Z was used for specification, at the PLD stage, rather than the
English that had been used previously; and a combination of Z and the guarded
command language was used for designs (CLD and MLD), rather than the English
and pseudocode which was previously used.

Because of the changes to the development process that were being introduced, two
modules were selected for accelerated development. The idea was that two senior and
experienced developers would carry out the work in order to gain practical experience
of the Z approach. All aspects of the work were carefully documented to provide
guidance for the developers of other modules.

14.5 Education and tools

Once the decision had been taken to use Z on part of the new release of CICS, there
was obviously a need to provide Z education for designers and developers. There was
a great variety in the experience of members of the development teams – some had
been writing software for 17 years, others for six months. There was also a great
mixture of backgrounds and abilities, although none had any experience in the use of
formal methods. Many had attended the IBM Software Engineering Workshop, which
introduced software engineering techniques, such as abstraction and loop invariants,
and used the CDL notation. An additional three-day course on Z was offered, taught
initially by Oxford researchers. This introduced the notation, and taught designers
and developers how to write Z. It was also found helpful to have a ‘Z for readers’



14.6. RESULTS 187

course: this was a course to help those who had to read documents containing the Z
notation, rather than needing to write Z, such as testers and writers of IBM publica-
tions. A few courses on ‘Refinement from Z specifications’ were also taught, although
the techniques were new, and were not put into practical use. By 1985, approxi-
mately 130 students had attended the courses on writing Z specifications, 30 had
attended the courses on reading Z specifications, and 50 had attended the courses on
refinement.

When IBM started using Z, there were few tools for Z available anywhere. The
tools developed for use at Hursley were simple, and were actually written by the
users of Z. The first need was for mechanisms for displaying and printing the many Z
mathematical symbols: this involved designing a new font for the IBM 3800 printer,
and defining SCRIPT variables and GML tags. A cross-reference tool was developed,
and later this was revised and improved by a student working at Hursley for a year
during his university course. This tool was an invaluable aid in helping people to
navigate around large specifications. It should be noted that this work on tools was
carried out well before there was an agreed syntax for the language. In fact, pressure
from Hursley, as well as elsewhere, was a major factor in persuading the PRG to start
its effort on the standardisation of the language. Although there were so few tools
available to the users of Z at Hursley, there did not seem to be any great pressure to
provide more tools, until much later, when more sophisticated tools were provided as
part of a more organised tools strategy. This change came about when tools became
available in the wider Z community, and IBM Z users realised how they could benefit
from their use.

14.6 Results

It is an integral part of the software development process at Hursley to collect mea-
surements at various points in the process. However, since there is a significant time
lag between specification and shipping to customers, the first feedback that was ob-
tained on the use of Z was more subjective than objective. Later on, it has become
possible to look at a comparison of the numbers of errors found by customers in
code which has been specified in Z and code which has not: since CICS/ESA Ver-
sion 3 Release 1.1 was only made generally available to customers in June 1990, this
comparison has only recently been possible.

14.6.1 Subjective results

The early feedback from designers and developers working in Z was generally
favourable: they were impressed with the simplicity and elegance of the notation,
and few were unable to cope with the mathematics required. One of the perceived
advantages lay in the use of the schema calculus to construct specifications from
smaller parts – in particular, it was felt to be helpful to describe the successful ver-
sion of an operation separately from the error cases, and then to combine them using
schema disjunction. The subjective impression of the users of Z was that the quality
of their work was improved. They were more confident that the code they were pro-
ducing was ‘correct’. Overall there did not seem to be a significant effect on project



188

scheduling – more time was spent on the earlier stages of the process, but this was
offset by reduced time on coding. However there was a one-time startup cost of about
three months due to the need for the developers to be educated in Z and to learn the
art of writing abstract specifications. It may be that the improvement in quality was
simply caused by the discipline of writing the formal document – it was much harder
to gloss over important issues. It was also found that the use of Z encouraged the
writing of more precise English prose. Most of the Z language was used, but not all:
it seemed that bags were not often used, and the facilities for generic definitions were
seldom required.

Several other factors were important in the introduction of Z:

• The users of Z actually believed in the techniques – they were not just being
imposed by management, but the users appreciated how the new techniques
would improve their work, and hence the product. An important factor in
bringing about this belief was education, which included the use of examples in
the users’ own application areas.

• Skilled consultancy was available to the Z users. A three-day course on Z
can teach students the notation, but real fluency comes only with practice,
and novices are bound to come across problems in their first few attempts
at non-trivial examples. It is important that experts are readily available for
consultation at this stage, to prevent disillusion setting in! At first, consultancy
was available to Hursley Z users from the Oxford researchers, but, later, local
experts were able to take over.

• There was management backing for the work. The success of the Z project
was actually important to management, since they had made a decision to go
outside the company’s accepted methods of software development: the success
of the project would vindicate their decision.

14.6.2 Quantitative results

As we mentioned above, a large number of measurements were taken during the
development process for CICS/ESA Version 3 Release 1. Some of these figures have
been released by IBM, and they make encouraging reading for supporters of formal
methods. However, a word of caution is in order here: it should be noted that IBM
do not claim to have been running a carefully designed scientific experiment to test
the merits of formal methods – there are no control cases, where we can look at the
results of developing the same piece of code with formal methods, and without. All
we can see are the results of applying formal methods in certain specific cases, and
we can give only tentative interpretations of the figures. It would not be difficult for
an opponent of formal methods to give different, less favourable, interpretations of
the data: for instance, it might have been the case that Z was used only on the least
complex parts of the work, or that it was actually the best developers that were using
Z.

In order to interpret the figures on error rates, it is important to understand the
scale of the software being produced. CICS/ESA Version 3 Release 1 is the largest
release of CICS that IBM has so far produced. The release consisted of 268,000 lines
of new and modified code (together with over 500,000 lines of unchanged code). Of
the new and modified code, approximately 37,000 lines (14 per cent) were produced
from Z specifications and designs, and a further 11,000 lines (4 per cent) were partially



14.6. RESULTS 189

specified in Z. Some 2000 pages of formal documentation were produced – this includes
both specifications and designs.

IBM has released the graph in Figure 14.2, which enables us to examine the
number of problems found at various stages of the development cycle, with figures
for Z specified and non-Z specified code. The first impression is that the problem

scale, starting from zero.
The vertical scale shows problems per thousand lines of code (KLOC), on a linear

I1I0DR0

Inspections

Pr
ob

le
m

s 
pe

r 
K

L
O

C

PLD CLD MLD UT FV SYSTEST CA

Development and availability cycle

Customer Availability

System Test

Functional Verification

Unit TestUT

FV

SYSTEST

CA

Non-Z specified code

Z specified code

MLD

CLD Component Level Design

Module Level Design

PLD Product Level Design

KEY

Figure 14.2: Comparison of problems found with two development methods in CICS/ESA
Version 3 Release 1

rate is lower in the Z specified code. However, when we look more closely, we can see
that the error rate for Z specified code is actually higher at the PLD stage. (These
are the errors found at the DR0 inspection.) This can be explained because of the
precision that is forced on the writer of the formal specification: he or she cannot
ignore difficult issues, and so is more prone to making a wrong decision, which can
be picked up by an inspector. Before the introduction of Z, the document produced



190

at this stage was written in English. This allowed the possibility that the writer
and a reader might have very different views of the function to be provided: it was
only later in the development, when the design was becoming more concrete, that
the disagreement about the meaning of the specification would come to light. It is
important that these errors are trapped at an early stage in the process, since a later
recognition of the same problem would be far more expensive.1 In fact, the graph
shows a worrying number of problems caught only at the system test stage for the
non-Z specified code: correction of these errors is not likely to be cheap.

Based on the above results about the reduction in frequency of errors in the Z
specified code, IBM has also calculated that there is a reduction in the total devel-
opment cost of the release. Since there is a corresponding reduction in programmer
days spent fixing problems, they estimate a 9 per cent reduction, as compared to
developing the 37,000 lines without Z specifications.

One of the better measurements of quality for a software product like CICS is the
number of errors reported by customers, since this is an obvious way for the customer
to judge quality. However, the length of time and the size of the sample mean that
figures available so far should be treated with some caution. CICS/ESA Version
3 Release 1.1 was only made generally available to customers at the end of June
1990, and it is IBM’s experience that many customers do not change immediately
to a new release when it is made available, unless there is some new functionality
that they particularly need, or they are working at the limits of the capacity of the
previous release. However, bearing those two provisos in mind, the figures on number
of problems reported by customers are extremely encouraging: in the first 18 months
after the release was made available, the code that was specified in Z seems to have
approximately 2 1

2 times fewer problems than the code not specified in Z. These figures
are even more encouraging when it is realised that the overall number of problems
reported is lower than on previous releases. There is also evidence to show that the
severity of the problems for code specified in Z is much lower than for the other
problems.

Taken as a whole, the quantitative results for the use of Z in CICS are encouraging
– they are certainly encouraging enough for IBM to have decided to continue the use
of Z on the next release. It is to be hoped that the results will remain as good when
the number of users of the new release increases. It will also be interesting to see how
the Z specified code compares to the old code for ease of maintenance.

14.7 The Oxford–Hursley collaboration

As we mentioned before, the research contract between IBM and the PRG started
in 1981. It is interesting to look at the work items on this contract and how they
have changed over the years, because this reflects the areas in which the Hursley
users of Z have been having problems at particular times. As we have mentioned
before, the earliest work on the contract involved showing how Z could be used for the
specification of (sequential) systems. The notation itself was still being developed, and
Hursley was a good source of case studies: having worked on small and medium-sized
examples, the PRG researchers were able to test out their notations on larger-scale
examples, such as parts of the CICS API. An important part of the PRG researchers’

1Studies have shown ([4, p. 44]) that, for large projects, it is 100 times more expensive to fix an
error found during maintenance than it is to fix the same error when it is found during requirements
capture.



14.7. THE OXFORD–HURSLEY COLLABORATION 191

work at this time was in education and consultancy: they conducted courses and
seminars on Z at Hursley, both for technical staff and for managers. They also spent
a lot of time at Hursley, simply being available to help novice users of the notations
with any problems that might arise.

Around 1985, the nature of the PRG researchers’ work began to change: they
spent less time at Hursley in direct contact with Z users, and more time working at
Oxford. By then, the Z notation had become fairly stable, a formal semantics had
been published [54], and there was a growing pressure on the PRG from the user
community to start a standardisation effort. Part of the reason for this pressure was
the way in which the notation had developed: it had been driven by case studies,
and there were now parts of the language which were not covered at all by the
earlier descriptions. There was also pressure from tool builders who wanted an agreed
standard on which to base their tools. Despite initial resistance from some parts of the
Z community in Oxford, work progressed, and at least two syntaxes were published
[36, 57]. In 1990, a project was started, which was funded by government and industry,
with IBM as one of the partners, which had the goal of standardising the notation. A
draft of the complete standard has now been produced [7], and this will be submitted
for BSI and ISO consideration in the near future.

One of the research items of perennial interest to IBM has been the specification
of concurrency. Since a transaction processing system involves many users contend-
ing for resources, it is convenient to be able to exploit parallelism. However, there
are difficulties in combining the model-based approach of Z with the specification
of concurrency. Various approaches, including CSP and action systems, have been
investigated, and work is continuing.

The final two research areas are closely linked: refinement and proof. It seems
likely that formal refinement techniques will not be widely used at Hursley until
there is at least some sort of mechanical assistance for proof, due to the problems of
scale involved. So work on refinement and proof is continuing at present. However,
significant advances have been made in the theory of refinement, as a direct result of
problems encountered by IBM developers at Hursley. In the early 1980s, the proof
obligations for data refinement were formulated in terms of a retrieve function: a
function that mapped concrete to abstract states. However, this function was not
sufficiently general to allow certain refinements which IBM developers believed to
be valid. This led to the more general concept of a retrieve relation, and to a re-
examination of the theory of refinement by other members of the PRG, eventually
producing the work on upwards and downwards simulations by Hoare and others
[18, 32].

In all these research areas, the collaboration between Hursley and Oxford has
been fruitful. While IBM has obtained solutions to some of the theoretical problems
which have arisen in their use of formal methods, the PRG has had an industrial-scale
testing ground for its formal specification techniques, as well as a plentiful source of
research problems. In recent years, there has also been some exchange of personnel,
with two IBM members of staff each spending a year’s study leave at Oxford, and
a PRG researcher spending a year working on the specification of the CICS API
(described in Chapter 15).



192

14.8 Conclusions

This chapter has described the use of Z in a development project at IBM Hursley.
The project involved introducing Z into the software development process for a release
of the CICS transaction processing system. Specifications and high-level designs
were written in Z, while lower-level designs were written in Dijkstra’s language of
guarded commands. As part of the IBM development process, measurements were
taken at various times. These make encouraging reading for supporters of formal
methods, since they show a greatly reduced error rate in the code produced from Z
specifications.

Acknowledgements The work described in this chapter has been carried out by
many people, and there are many who have contributed significantly to its success. I
can only attempt to acknowledge their work by giving a list of names. Any omissions
are accidental, and are entirely my fault! Many of these people have made comments
on this chapter, and I am grateful to them – in particular, Peter Collins, Ian Hayes,
Tony Hoare and John Wordsworth. I would also like to thank IBM (UK) Laboratories
Ltd for permission to use their figures on the use of Z in CICS/ESA Version 3 Release
1. Two earlier reports [8, 67] have described some aspects of these two projects; I am
happy to acknowledge my debt to their authors.

At IBM Hursley, those involved with Z have included, as writers: Peter Alderson,
David Blyth, Jonathan Hoare, Iain Houston, Steve King, Peter Lupton, Paul Mundy,
Glyn Normington, Mark Phillips, David Renshaw, Colin Shade, John Wordsworth;
and, as managers: Peter Bauchop, Peter Collins, Julian Jones, John Nicholls, Mark
Phillips, Tony Rogers.

At Oxford, those involved in the IBM CICS project have included, as research
officers: Tim Clement, Ian Hayes, Mark Josephs, Steve King, Divya Prasad, Jane
Sinclair, Ib Sørensen, Jim Woodcock; as coordinators: John Nicholls, Ib Sørensen;
and, as consultants: Tony Hoare, Cliff Jones, Mark Josephs, Jim Woodcock.



Chapter 15

Specifying the IBM CICS
Application Programming
Interface

Steve King

Abstract This chapter reports on a recent project at IBM Hursley, which involved
the description of a large part of the Application Programming Interface for the
CICS transaction processing system. The purpose of this exercise was not to produce
code, nor was it simply an academic exercise in specification. Instead, the aim was to
provide, for commercial reasons, a formal description of the already existing interface.

15.1 Introduction

At the outset of the joint research contract between IBM Hursley and Oxford Univer-
sity’s Programming Research Group, one of the main items of interest was the speci-
fication of particular modules from the Application Programming Interface (API) for
CICS, IBM’s major transaction processing system. These case studies, some of which
are included in Chapter 13, were written by the Oxford researchers partly as a test of
the Z notation, to show IBM that it could be successfully used on problems of this size
and complexity. Later, after it had been decided to use Z in the restructuring of the
CICS code (see Chapter 14), these case studies were useful as examples, in a familiar
problem domain, for the IBM developers who were writing their own specifications.

Some years later, after the CICS restructure had been completed, it was decided
to revisit the earlier work, and to write Z specifications for most of the application
programming interface. This work is described in this chapter.

Copyright c© 1992 International Business Machines Corporation.

193



194

15.2 Using Z to describe interfaces

As well as the work on the particular modules of the API described above, which
was carried out by the Oxford researchers, there had also been two previous pieces
of work within IBM Hursley which involved defining programming interfaces using
Z. In 1988, a decision was made to extend the CICS API by adding the Common
Programming Interface for Communications, a part of IBM’s Systems Application
Architecture. In order to help the developers who had to implement the interface
within CICS, a Z specification was written, which was intended to make more precise
the informal description which had been given by the architects (who were based in
the United States). As might be expected, the process of writing this specification
revealed various inaccuracies and omissions in the original informal description. The
specification itself has been published [9], as well as reports of the work [66].

Work on specifying programming interfaces continued in 1989, with a project to
specify a small part of the CICS API. In the release which was then being worked on,
CICS file control was enhanced by adding a new feature, known as data tables. Once
again, in order to help the developers, a Z specification of this feature was written,
which has also been published [24].

With the knowledge that these two projects had demonstrated the practicality of
describing programming interfaces in Z, it was decided in November 1989 to describe
a large part of the CICS API. This work has now almost finished, and we describe it
here.

15.3 The CICS Application Programming Interface
(API)

For early versions of CICS, writing CICS application programs involved embedding
macro calls in the program. The macro interface exposed information on CICS in-
ternal control blocks and encouraged a style of programming which exploited this
knowledge of the internal structure of CICS. In 1976, with the release of CICS/OS/VS
Version 1 Release 3, a command-level application programming interface was provided
as an alternative to the macro-level interface. The aim was to move towards a cleaner
interface, making application programming easier and less error-prone, and removing
the need for the programmer to understand the CICS control blocks. (Support for
the macro-level interface was withdrawn for COBOL and PL/I applications in 1990,
with the release of CICS/ESA Version 3 Release 1.1, and for assembler applications
in 1991, with the release of CICS/ESA Version 3 Release 2.1.)

The purpose of a transaction processing system such as CICS is to control the
way in which many tasks are allowed access to resources such as data files, storage
and terminals. The Application Programming Interface (API) is the means by which
CICS application programs can request access to these resources. Figure 15.1 gives a
diagrammatic representation of the interface.

Application programs are written in a familiar imperative language, and CICS
commands are inserted where needed. For instance, a CICS COBOL program might
contain:

MOVE DATA1 TO REC1.
EXEC CICS WRITE FILE(FNAME)

FROM(REC1)



15.3. THE CICS APPLICATION PROGRAMMING INTERFACE (API) 195

B
B
B
B
B
B
B
B
B

@
@

@
@

@
@

@
@
@

b
b

b
b

b
b

b
b

b
b

b
b

b
bb

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�

"
"

"
"

"
"

"
"

"
"

"
"

"
""

application
program

storage
control

terminal
control

file
control

program
control

· · ·

· · ·storage terminals data programs

The CICS API

CICS tasks

Resources

Figure 15.1: The CICS API as a layer between programs and resources



196

LENGTH(255)
RESP(RESPCODE) END-EXEC.

A preprocessor for each supported programming language is supplied as part of CICS.
This is used to translate the embedded commands into calls, in the appropriate lan-
guage, to the CICS command processor.

The API is described informally in an IBM manual [25], which contains 91 com-
mands. Each command has several options which may be supplied by the programmer
– there are 312 options in all – and each command gives a response – either the normal
response, or one of the 60 error responses. The API has traditionally been divided
into several groups of commands – some of them are shown in Figure 15.1. These
groupings had been used in early versions of the informal description [25], and so it
was decided to use them as the basis of the formal specifications; rather than pro-
ducing one monolithic document describing the whole of the API, several documents
were produced, each of which was smaller and easier to comprehend, and only de-
scribed a section of the API. In fact, there is not an exact one-to-one correspondence
between the traditional groupings and the specifications that were produced; in sev-
eral cases, a document was produced which covered the API commands from more
than one area, and one additional specification was produced, which did not describe
any API commands, but instead described some aspects of Transaction Management
– how tasks are created and destroyed, and how they are associated with terminals.
It was also decided to divide up the descriptions of two special API commands and
distribute them among the other specifications (see below).

15.4 Reasons for specifying the API

At present, there are versions of CICS available for five different operating systems:
CICS/ESA, CICS/OS/VS, CICS/MVS, CICS/OS/2, CICS/VSE.1 Although there
are some pieces of functionality that are only supported for one or two operating
systems, it is intended that there should be a command base, consisting of about
60 commands, which will contain commands whose behaviour is consistent across all
operating systems. The aim of the API specification project was to describe formally
this command base. This definition would support the idea of a family of CICS
products, which would provide a common interface, enabling portable applications to
be written.

A second reason for writing the specifications was to give a definitive statement of
the behaviour which CICS guarantees of its API, as opposed to what might be termed
‘accidental’ behaviour. This, in turn, would allow much better communication with
the user of the API. Without the formal specification, the application programmer has
to rely on the informal descriptions in the CICS manuals in order to understand the
effect of a particular command. It comes as no great surprise to proponents of formal
methods that these informal sources are incomplete, and often ambiguous. Thus the
programmer is often reduced to experimenting with the system to find out what a
command does in a particular set of circumstances. These experiments are often time-
consuming, and may also be inconclusive. However a more serious problem is that
they may uncover accidental behaviour which was not part of the original designer’s
intention. Since the behaviour was accidental, it is possible that it might disappear in
a future release, which could have disastrous consequences if programmers have based

1All trademarks of the IBM Corporation.



15.5. HOW THE SPECIFICATIONS WERE WRITTEN 197

their programs on that behaviour. With over 30,000 licences for CICS worldwide,
it is likely that virtually every single strange behaviour of a CICS command has
been discovered, and is being relied upon, by some programmer somewhere. Thus
the developers of CICS are themselves constrained by having to ensure backward
compatibility. The provision of a formal description of the API is an important step
in improving the communication between the suppliers of CICS and their customers.
It tells the customers what behaviours of the API they can safely exploit, and it helps
them to avoid exploiting behaviour which is not guaranteed. Similarly it can protect
the supplier from inadvertently destroying part of the guaranteed function.

A subsidiary aim of the API specification project was to encourage the use of
formal methods, in the rest of CICS design and development, in other parts of IBM,
and among the many suppliers of CICS-based application packages. Since the use
of Z on the restructure project (see Chapter 14) had involved work of a proprietary
nature, none of that Z work could actually be published. However, since the API
is a public interface, the new work could be made widely available. It was hoped
that this large, published, example of formal specification, produced in a commercial
environment, would encourage the teaching of formal methods in higher education
centres, and would also encourage other companies to use such methods.

15.5 How the specifications were written

Each specification was the responsibility of a single author. This author carried out
the necessary research and wrote the Z specification. In almost all cases, the authors
were ‘Z experts’ rather than ‘CICS experts’. The first stage of the specification process
involved large amounts of research to discover what the particular CICS commands
actually did. The primary source of information for this research was the manuals
which are supplied to customers [25, 26], together with any other printed material that
might be available – for instance, the ‘prototype’ API specifications mentioned above,
which were written in the early 1980s. It was also useful at this stage to establish
a good relationship with the Hursley experts in the relevant area – these were the
people to whom the specifier could go with a list of questions and expect definitive
answers about exactly what happened when a particular command was executed
under certain circumstances. Interestingly, the answers often seemed to be based on
the experts’ intimate knowledge of the code, rather than because they already had a
good abstract model of the behaviour of the command. Other techniques were also
used to understand the behaviour of a command: in some cases, questions could be
answered by reading the code. As a last resort, some specifiers used the very method
that they had condemned when it was used by application programmers to explore a
command’s behaviour – they wrote simple test programs!

When the specifier thought that he or she had a reasonably coherent idea of the
behaviour of the commands, a model for the state of the system was formulated. This
model was presented to a meeting of interested parties, together with some indications
of how the operations could be described. Those present at this meeting included
both Z experts and CICS experts, and the specifier received feedback from both
groups. Taking into consideration the ideas expressed at this meeting, the specifier
then produced a document which contained a draft version of the full specification.
This was circulated to the same interested parties and feedback was again obtained.
Based on these responses, a document was produced for a formal inspection. Such
inspections are a normal part of the Hursley software development process, so all



198

the participants were used to them. Yet another version of the document was then
produced, and, when the moderator of the inspection was satisfied that all points had
been satisfactorily dealt with, a final version was produced and published as an IBM
Hursley Technical Report.

15.6 Experiences

It is interesting to compare the problems that arose in this API specification project
with those reported by Hayes in [17], which arose when the initial prototype API
specifications were carried out in the early 1980s. Between the two projects, there
had been several years of development of the Z language, to the extent that a stan-
dardisation effort was now under way. Several of the problems encountered in the
earlier work on the API specification seem to have been solved, while others remain
intractable.

15.6.1 Communication problems

The problems of communication mentioned in [17] were not as serious in the more
recent work. In the intervening years, many IBM personnel had become familiar with
the Z notation, and, of the people involved in writing the new specifications, all bar
one were experienced Z users. In fact, most of the specifiers were IBM employees who
had been working at Hursley for several years, and so they had a good understanding
of IBM and CICS terminology. Thus the communication problems between specifiers
and CICS experts, which had been seen in the earlier work, were not too serious.

15.6.2 The ‘right’ level of abstraction

Of course, the problem mentioned by Hayes of finding the ‘right’ level of abstraction
was still present in the more recent work: it is just one part of the problem of writing
a ‘good’ specification. One of the difficulties in finding the right level of abstraction
has already been mentioned, namely deciding whether a certain behaviour was part
of the designer’s original intention, or whether it was ‘accidental’, in which case the
specifier could justifiably abstract away from it.

A second major problem in making the specifications comprehensible lay in the
actual complexity of the system being described. One technique that was found to
be useful here was promotion; since many of the specifications were concerned with
managing resources of various kinds, it was possible to give them the same overall
structure. First a single, unnamed, instance of the resource was described – for
instance, a temporary storage queue – together with the operations on that single
instance – reading or writing an entry on the queue. Then a collection of named
instances was described, and the operations on the full system were described, using
a promotion schema and the previously defined operations on the single instance. The
realisation that promotion was such a powerful technique led to more research work
being carried out at Oxford on the mathematical ideas behind promotion [39, 64].

However, in those cases where it was not possible to use promotion, it was still
necessary to structure the state. The state schema would often consist of a large
number of variables and it would be necessary to define several smaller schemas and
operations on them, in order to be able to construct comprehensible definitions of the
operations on the whole state. Obviously there were many ways in which a large state



15.6. EXPERIENCES 199

schema could be divided up, and choosing the best way involved deciding between
a large number of small sub-schemas with easy operations, and a smaller number of
larger sub-schemas with more complex operations. This decision was never easy, and
often came down to a matter of taste. Sometimes, the only way to decide was to
experiment with different divisions of the state.

15.6.3 Putting modules together

In essence, the problems mentioned by Hayes concerning putting the specifications
of the separate parts of the API together were exactly the same in the more recent
work. Once again, the simplistic view was that all that was necessary was to take the
conjunction of the separate state schemas to form a state schema for the whole system,
and to describe the effect of each API command on the whole state by showing its
effect on the relevant small state, together with a constraint that none of the other
small states should change. Unfortunately, in practice, the specifications were not
entirely independent, and did not fit together quite so neatly. The first problem arose
when the writer of the Interval Control specification realised just how complicated
the link between transactions and terminals was. This led to his work on the Interval
Control specification being suspended for about five months, while a new specification,
on Transaction Management, was written. This specification was not part of the
original plan, and it did not describe any API commands, but it was essential for
describing not only Interval Control but also Program Control. It became one of the
larger specifications written as part of this project.

The second problem with putting together the specifications was actually one
which had been reported by Hayes in [17]. It concerned the interaction between the
Condition Handling specification and other specifications, such as Temporary Storage,
which contained commands which could raise ‘suspend conditions’. It is interesting to
note that, although the problem had been identified during the initial prototype work
on the API specifications, the more recent writers of the specifications had forgotten
the problem, and were thus surprised to come across it in their work!

A third problem arose in the area of Storage Control. The CICS API provides
operations GETMAIN and FREEMAIN for acquiring and releasing storage for application
programs. One parameter to these commands is the address of the storage in question,
so storage is naturally modelled as a partial function from addresses to bytes. There is
a constraint that the storage acquired by one program must not be confused with the
storage offered to another. Operations that may be described include modifying and
inspecting the contents of storage. Unfortunately, the explicit nature of this model
of storage does not fit well with the abstract way in which the other parameters of
the API commands have been modelled. Input and output parameters are usually
modelled by saying that a value is passed across the interface: in fact, of course, it is
often the address of a piece of storage containing that value which is passed. There
is also a problem since several of the commands which return data to the application
program have an option whereby, instead of the data, they return the address of
a piece of storage containing the data. Storage Control has internal operations to
provide such storage for the relevant resource managers, and it is not difficult to model
them. But now there is a problem with modelling the other method of obtaining the
data, as an output sequence of bytes. With the explicit model of storage, we should
model this as an input address, with the effect of the command being to modify
storage at that address. This is clearly a less abstract description than is desirable,
and it was eventually decided not to describe the effect of the SET option, which



200

returns an address, in the cases where it is an alternative to the INTO option, which
returns the actual data.

A final problem with the integration of the different parts of the API specifications
actually arose from the solution of a problem identified by Hayes. When the earlier
work on the API specifications was carried out, it did not consider the recoverability
of resources. In the later work, a decision was made at the start of the project that
recoverability would be included. This made many of the states more complicated,
as recoverable and non-recoverable resources behaved differently. It also meant that
SYNCPOINT and SYNCPOINT ROLLBACK had to be described. These two commands
could not be specified in the usual way, by their effect on a local ‘recoverability’ state,
as this state was actually distributed around the different resource managers. So it
was decided to describe the commands in many smaller pieces, each giving the effect
of SYNCPOINT or SYNCPOINT ROLLBACK on the state of a single resource manager. The
overall effect of the commands could then be obtained by taking the conjunction of
these smaller descriptions.

15.6.4 Parallelism

The problem of dealing with parallelism which Hayes mentioned was dealt with in
the more recent API specification work, using a notation that had been developed
for the earlier work on the specification of the Common Programming Interface for
Communications [66]. This notation was invented by the writers of the specification,
and they described, informally, what they wanted it to mean. Formal semantics
were then worked out at Oxford [63]. The notation was particularly intended to
help in the specification of non-atomic operations – these are needed on occasions
when the outcome of one program’s request depends on some action being taken by
another program. Since operations in Z are usually interpreted as being atomic, a
new notation was needed. Using this notation, we could define an operation Op:

Op =̂ Op atomic
2 Op front end → Op back end

where Op atomic, Op front end and Op back end are all schemas. Informally, this
specification is interpreted as follows:2 on execution, the precondition of either
Op atomic or Op front end must be true. If both are true, the choice between
the branches is non-deterministic. If the precondition of Op atomic is true, and the
first branch is chosen, the effect of the command is as described by Op atomic, and
control is then returned to the program. If the precondition of Op front end is true,
and the second branch is chosen, then Op front end has its effect, but control is not
returned to the program. Instead the program is suspended until the precondition of
Op back end is true – this can only happen because of the activity of other transac-
tions in the system – then Op back end has its effect, and control is finally returned
to the program.

15.6.5 Distributed systems

The final technical problem identified by Hayes was that of describing a distributed
collection of CICS systems. It was decided at the outset of the recent work not
to attempt to deal with this problem. It is an interesting specification problem to

2The formal semantics in [63] are defined in terms of action systems.



15.7. RESULTS 201

describe the effect of the remote execution of a command in a distributed CICS
system, and one that may be attempted by Hursley and Oxford at some later stage.

15.7 Results

Since the aim of the API project was to produce specifications, it is not possible to
give quantitative results for the success of the work, as was possible for the earlier
use of Z as a basis for code development, described in Chapter 14. At the time of
writing, the following areas of the API have been specified:

• automatic transaction initiation;

• basic mapping support;

• condition handling;

• interval control;

• program control;

• storage control;

• task control;

• temporary storage;

• terminal control;

• transactions and principal facilities;

• transient data.

These have all been published as IBM Hursley Technical Reports. Some use has
been made of these reports as education material within Hursley: when developers
or contractors have needed to learn about an area of CICS, the Z descriptions of the
API have provided an unambiguous and well-structured source of information.

An interesting change in the development cycle for the API specification occurred
during the course of the project. At the start of the project, the technology used
to produce the specifications was fairly primitive: there were tools to help with the
printing, previewing and cross-referencing of documents, but nothing as sophisticated
as a type-checker. Midway through the project, a Z tool, running on the IBM PS/2
machine, became available for use on the project. The tool was based on the same
markup language that had been used previously, but it incorporated a parser, type-
checker and cross-referencer. Use of the tool meant that a specifier could be confident
that the document presented for formal inspection contained no Z type errors. This
had a marked effect on the nature of the inspections, since the inspectors were able
to concentrate more on the meaning of the mathematics, rather than worrying about
its syntax. The tool has also had an effect on the way in which inspectors prepare for
inspections: instead of reading a hard copy of the document, they can read it online,
using the tool’s facilities for schema expansion and definition finding to help them
navigate around the document.

The success or otherwise of this project may be measured in the future by seeing
what use is made of the specifications that have been written. There are some plans



202

to provide Z education for possible audiences for the specifications: designers and
developers of CICS application programs and packages, those involved with CICS
education, etc. It will be interesting to see what decision these audiences make about
the investment needed to understand the specifications, as compared to the benefits
to be gained by so doing.

15.8 Conclusions

This chapter has reported how the Z notation was used to write a formal description
of a programming interface. This was not a specification from which code was to
be developed, but a precise record of an already existing interface. The specification
was written for commercial reasons, since it was felt that a formal specification would
greatly improve the interaction between the supplier and the user of the interface,
reducing the chance of a user relying on accidental behaviours.

Rather than writing one large specification to describe the whole interface, several
smaller documents were written, each covering a part of the interface. The interac-
tions between these documents revealed some interesting relationships between differ-
ent parts of CICS. The Z notation was sufficiently powerful to describe the concepts
required, and the technique of promotion was found particularly useful in structuring
many of the specifications.

Acknowledgements The specifiers who worked on the API specification project
were David Blyth, Steve King, Jonathan Hoare, Iain Houston and John Wordsworth,
and Mark Phillips was the manager responsible. I am grateful to them, and to Pete
Collins, Ian Hayes and Tony Hoare, for their comments on this chapter.

Many others, both at Oxford and Hursley, have been involved with the use of Z
at IBM Hursley: a list of contributors may be found in Chapter 14.



Chapter 16

CICS Temporary Storage

Ian Hayes

Abstract CICS Temporary Storage provides facilities for storage of information in
named queues. The operations that can be performed on an individual queue are
either the standard queue-like operations (append to the end and remove from the
beginning), or array-like random access read and write operations.

16.1 A single queue

An element of a queue is a sequence of bytes:

BYTE == 0 . . 255
TSElem == seqBYTE

A single queue may be defined by the following schema:

TSQ
ar : seqTSElem
p : N

p ≤ #ar

The sequence ar contains the items in the queue. The size of the sequence is always
equal to the number of append operations that have been performed on the queue since
its creation – independent of the number of other (remove, read or write) operations.
The pointer p keeps track of the position of the item which was last removed or read
from the queue. The initial state of a queue is given by an empty sequence and a
zero pointer.

TSQ Initial =̂ [TSQ | ar = 〈〉 ∧ p = 0]

203



204

16.1.1 Operations

We define four operations on a single queue. The definitions of these operations use
the following schema:

∆TSQ =̂ TSQ ∧ TSQ ′

∆TSQ (∆ for change) defines a before state TSQ , with components ar and p (sat-
isfying p ≤ #ar), and an after state TSQ ′, with components ar ′ and p′ (satisfying
p′ ≤ #ar ′). The definitions of the operations follow.

Append0
∆TSQ
from? : TSElem
item! : Z

ar ′ = ar a 〈from?〉 ∧
item! = #ar ′ ∧
p′ = p

The new element from? is appended to the end of ar to give the new value of the
sequence. The position of the new item is returned in item!. The pointer position is
unchanged.

Remove0
∆TSQ
into! : TSElem

p < #ar ∧
p′ = p + 1 ∧
into! = ar(p′) ∧
ar ′ = ar

The pointer must not already have reached the end of the sequence. The pointer
is incremented to indicate the next item in the queue and the value of that item is
returned in into!. The contents of the sequence are unchanged.

Write0
∆TSQ
item? : Z
from? : TSElem

item? ∈ 1 . . #ar ∧
ar ′ = ar ⊕ {item? 7→ from?} ∧
p′ = p

The position item? must lie within the bounds of the current sequence. The item at
that position in ar is overridden by the value of from? to give the new value of the
sequence. The pointer position is unchanged.



16.1. A SINGLE QUEUE 205

Read0
∆TSQ
item? : Z
into! : TSElem

item? ∈ 1 . . #ar ∧
into! = ar(item?) ∧
p′ = item? ∧
ar ′ = ar

The value of the item at position item?, which must lie within the bounds of the
sequence, is returned in into!. The pointer position is updated to the value of item?.
The sequence is unchanged.

In the above, all of the operations have been specified in terms of the sequence
ar and pointer p. While this is reasonable for the Read and Write operations it does
not show the queue-like nature of the Append and Remove operations. Let us now
show that the queue-like operations are the familiar ones. We can define a standard
queue by

Q == seqTSElem

Operations on queues refer to before and after components q and q ′, respectively.

∆Q =̂ [q , q ′ : Q ]

The standard ‘append to the end of a queue’ operation is given by

Standard Append
∆Q
from? : TSElem

q ′ = q a 〈from?〉

The standard ‘remove from the front’ of the queue operation is given by

Standard Remove
∆Q
into! : TSElem

q = 〈into!〉a q ′

The predicate in the above specification may be unconventional to some readers. It
states that the value of the queue before the operation is equal to the value returned
in into! concatenated with the value of the queue after the operation. This form
of specification more closely reflects the symmetry between Standard Append and
Standard Remove than the more conventional and more operational

into! = head(q) ∧ q ′ = tail(q)

To see the relationship between standard queues and temporary storage queues
we need to formulate the correspondence between the respective states.



206

QLike
q : Q
TSQ

q = tailp(ar)

A standard q corresponds to the sequence ar with the first p elements removed.
Given the relationship QLike we can show the relationship between Append0 and
Standard Append . This is formalised by the following theorem.

Theorem If an Append0 is performed with initial state TSQ and final state TSQ ′,
then the corresponding standard queue states Q and Q ′ (as determined by QLike
and QLike ′ respectively) are related by Standard Append .

Append0 ∧ QLike ∧ QLike ′ ` Standard Append

Proof

1. q , q ′ : Q QLike,QLike ′

2. from? : TSElem Append0

3. q ′ = tailp
′
(ar ′) QLike ′

= tailp(ar a 〈from?〉) Append0

= (tailp(ar)) a 〈from?〉 as p ≤ #ar from TSQ

= q a 〈from?〉 QLike
Standard Append (1), (2), (3)

2

We can now do the same for Remove.

Theorem If an Remove0 is performed with initial state TSQ and final state TSQ ′,
then the corresponding standard queue states Q and Q ′ (as determined by QLike
and QLike ′ respectively) are related by Standard Remove.

Remove0 ∧ QLike ∧ QLike ′ ` Standard Remove

Proof

1. q , q ′ : Q QLike,QLike ′

2. into! : TSElem Remove0
3. p < #ar Remove0
4. q = tailp(ar) QLike

= 〈ar(p + 1)〉a (tailp+1(ar)) (3), property of tail

= 〈into!〉a (tailp
′
(ar ′)) Remove0

= 〈into!〉a q ′ QLike ′

Standard Remove (1), (2), (4)
2



16.1. A SINGLE QUEUE 207

16.1.2 Errors

To cope with errors we can introduce a report to indicate success or failure of an op-
eration. The set CONDITION contains all the error reports plus the report Success.

CONDITION ::= Success | ItemErr | NoSpace | QIdErr | SysIdErr

If an error occurs we would like the queue to remain unchanged.

ERROR
∆TSQ
report ! : CONDITION

θTSQ ′ = θTSQ

In the operations described above there are three errors that can occur: trying to
remove an item from a queue with no items left to remove, trying to read or write at
a position outside the sequence, and running out of space to store an item.

NoneLeft
ERROR

p = #ar ∧
report ! = ItemErr

OutofBounds
ERROR
item? : Z

item? 6∈ 1 . . #ar ∧
report ! = ItemErr

OutOfSpace
ERROR

report ! = NoSpace

If the operations work correctly the report indicates Success.

Successful =̂ [report ! : CONDITION | report ! = Success]

The operations given previously can now be combined with the erroneous situa-
tions. We redefine the operations in terms of their previous definitions.

Append =̂ (Append0 ∧ Successful) ∨ OutOfSpace
Remove =̂ (Remove0 ∧ Successful) ∨ NoneLeft

Write =̂ (Write0 ∧ Successful) ∨ OutofBounds ∨ OutOfSpace
Read =̂ (Read0 ∧ Successful) ∨ OutofBounds

Note that OutOfSpace does not specify under what conditions it occurs. The spec-
ifications of Append and Write do not allow us to determine whether or not the



208

operation will be successful from the initial state and inputs to an operation. This
is an example of a non-deterministic specification. It is left to the implementor to
determine when a NoSpace report will be returned (we hope it will not be on every
call).

At the level of abstraction of this description we have no knowledge of the space
required for storing queues and hence this is not the appropriate place to define
under what conditions this error can occur. At some stage during implementation
the conditions under which this error can occur can be defined. At this point the
implementer and client should get together once more to make sure they agree on the
definition.

16.2 Named queues

We now want to specify a system with more than one queue. A particular queue can
be specified by name and the above operations can be performed on it. We use a
mapping from queue names

[TSQName]

to queues. The state of our system of queues is given by

TS == TSQName 7→ TSQ

The initial state of the system of queues is given by an empty mapping.

TS Initial : TS

TS Initial = {}

The before and after states of the operations are ts and ts ′, respectively.

∆TS =̂ [ts, ts ′ : TS ]

Our operations require the updating of a particular named temporary storage queue.
We introduce a framing schema, ΦTS , to encapsulate the common part of updating
for operations on queues that already exist.

ΦTS
queue? : TSQName
∆TS
∆TSQ

queue? ∈ dom(ts) ∧
θTSQ = ts(queue?) ∧
ts ′ = ts ⊕ {queue? 7→ θTSQ ′}

Note that ΦTS specifies that the named queue (alone) is updated but does not specify
in what way it is updated. The latter is achieved by combining ΦTS with the single
queue operations to get the operation on named queues.

In adding named queues we have added the possibility of a new error: trying to
perform operations on non-existent queues.



16.2. NAMED QUEUES 209

NonExistent
∆TS
queue? : TSQName
report ! : CONDITION

queue? 6∈ dom(ts) ∧
ts ′ = ts ∧
report ! = QIdErr

Our single queue operations, except AppendQ which is allowed on a non-existent
queue, can now be redefined in terms of our previous definitions.

RemoveQ =̂ (∃∆TSQ • ΦTS ∧ Remove) ∨ NonExistent
WriteQ =̂ (∃∆TSQ • ΦTS ∧ Write) ∨ NonExistent
ReadQ =̂ (∃∆TSQ • ΦTS ∧ Read) ∨ NonExistent

The auxiliary variables in ∆TSQ (ar , p, ar ′, p′) are hidden in the signatures of the
final operations and the operations inherit the errors from the equivalent single queue
operations.

A queue is created by performing an AppendQ operation on a queue that does
not exist. The following schema describes the creation of a queue:

CreateQ
∆TS
queue? : TSQName
TSQ Initial
TSQ ′

queue? 6∈ dom(ts) ∧
ts ′ = ts ∪ {queue? 7→ θTSQ ′}

The relationship between TSQ Initial (ar , p) and TSQ ′ (ar ′, p′) is not defined within
this schema. This is supplied by Append in the following definition:

AppendQ =̂ (∃∆TSQ • (ΦTS ∨ CreateQ) ∧ Append)

Note that for a non-existent queue, if an error occurs (i.e. a NoSpace condition), then
an empty queue will be created.

In addition to these promoted operations on named queues we have an operation
to delete a named queue.

DeleteQ0
∆TS
queue? : TSQName
report ! : CONDITION

queue? ∈ dom(ts) ∧
ts ′ = {queue?} −C ts ∧
report ! = Success

An exception occurs if the queue to be deleted does not exist; DeleteQ becomes

DeleteQ =̂ DeleteQ0 ∨ NonExistent



210

16.3 A network of systems

Temporary storage queues may be located on more than one system. Let us call the
set of all possible system identifiers SysId .

[SysId ]

We can represent temporary storage queues on a network of systems by

NTS == SysId 7→ TS

For a network, nts : NTS , dom(nts) is the set of systems that share temporary storage
queues and for a system with identity sysid such that sysid ∈ dom(nts), nts(sysid)
is the temporary storage state of that system. A change of network state uses the
following schema:

∆NTS =̂ [nts,nts ′ : NTS ]

The operations on temporary storage queues may be promoted to operate for a net-
work of systems by the following framing schema:

ΦNTS
∆NTS
sysid? : SysId
∆TS

sysid? ∈ dom(nts) ∧
ts = nts(sysid?) ∧
nts ′ = nts ⊕ {sysid? 7→ ts ′}

As with the promotion of operations to work on named queues, the above schema only
specifies which system is updated but not how it is updated. The latter is supplied
when ΦNTS is combined with the definitions of the operations on a single system.

Network operation also introduces the possibility of an error if the given system
does not exist.

NoSystem
∆NTS
sysid? : SysId
report ! : CONDITION

sysid? 6∈ dom(nts) ∧
nts ′ = nts ∧
report ! = SysIdErr

The operations on a multiple system are given by

AppendQN 0 =̂ (∃∆TS • AppendQ ∧ ΦNTS ) ∨ NoSystem
RemoveQN 0 =̂ (∃∆TS • RemoveQ ∧ ΦNTS ) ∨ NoSystem

ReadQN 0 =̂ (∃∆TS • ReadQ ∧ ΦNTS ) ∨ NoSystem
WriteQN 0 =̂ (∃∆TS • WriteQ ∧ ΦNTS ) ∨ NoSystem



16.3. A NETWORK OF SYSTEMS 211

The sysid? and queue? name supplied as inputs are not necessarily those on which
an operation takes place. A queue name on a given system may be marked as actually
being located on another (remote) system, possibly with a different name on that sys-
tem. We model this by the function remote which takes an input pair (sysid?, queue?)
and gives the corresponding actual pair (sysid !, queue!) on which the operation is per-
formed

remote : (SysId × TSQName) → (SysId × TSQName)

In many cases the input sysid? and queue? name are the actual system and queue
name; in these cases remote behaves as the identity function.

We use the following schema to incorporate remote into the operations:

TSRemote
sysid?, sysid ! : SysId
queue?, queue! : TSQName

(sysid !, queue!) = remote(sysid?, queue?)

The outputs, sysid ! and queue!, of TSRemote form the inputs to the operations.
If a sysid? parameter is supplied then the operations on temporary storage queues
are defined by

AppendQN 1 =̂ TSRemote >> AppendQN 0
RemoveQN 1 =̂ TSRemote >> RemoveQN 0

ReadQN 1 =̂ TSRemote >> ReadQN 0
WriteQN 1 =̂ TSRemote >> WriteQN 0

Recall that the schema operator ‘>>’ (piping) identifies the outputs (variables ending
in ‘!’) of its left operand with the inputs (variables ending in ‘?’) of its right operand;
these variables are hidden in the result. All other components are combined together
as for schema conjunction (∧).

If no sysid? parameter is given then the operations are given by

AppendQN 2 =̂ AppendQN 1[cursysid?/sysid?]
RemoveQN 2 =̂ RemoveQN 1[cursysid?/sysid?]

ReadQN 2 =̂ ReadQN 1[cursysid?/sysid?]
WriteQN 2 =̂ WriteQN 1[cursysid?/sysid?]

That is, the sysid? parameter is replaced by a parameter giving the identity of the
current system (the system on which the operation was initiated).

16.3.1 A note on the current implementation

Each system keeps track of the names of queues that are located on other (remote)
systems and, for each remote queue, the identity of the remote system and the name
of the queue on that system. It is possible that the referred request could be for a
queue name that is also remote to the referred system, in which case the request is
further referred to another system. To find the system on which the queue actually
resides we need to follow through a chain of systems until we get to a system on



212

which the queue name is considered local. We can model the implementation by the
function

rem : (SysId × TSQName) 7→ (SysId × TSQName)

which for a sysid and queue name gives the sysid and queue name of the next link in
the chain; if a sysid and queue name pair is not in the domain of rem, then the chain
is finished. The function remote should be the same as the repeated application of
rem until the result is no longer in its domain. We define the function repeat, which
repeatedly applies its argument (another function) until the result is no longer in the
domain of the argument function.

[X ]
repeat : (X 7→ X ) 7→ (X → X )

dom repeat = {f : X 7→ X | ¬ (∃ x : X • (x , x ) ∈ (f +))}
∀ f : dom repeat ; x : X •

(x 6∈ dom f ⇒ (repeat f )(x ) = x ) ∧
(x ∈ dom f ⇒ (repeat f )(x ) = (repeat f )(f x ))

The relationship between remote and rem is simply

remote = repeat(rem)

that is,

∀ s : SysId ; q : TSQName •
(s, q) 6∈ dom rem ⇒ remote(s, q) = (s, q) ∧
(s, q) ∈ dom rem ⇒ remote(s, q) = remote(rem(s, q))

Since remote is a total function the equality of remote and repeat(rem) requires that
no chain of rem’s contains a loop (so that repeat(rem) is also total).

Given the function rem, if we take the corresponding (curried) function r

r : SysId → (TSQName 7→ (SysId × TSQName))

∀ s : SysId ; q : TSQName •
dom(r s) = {q : TSQName | (s, q) ∈ dom rem} ∧
(q ∈ dom(r s) ⇒ r(s)(q) = rem(s, q))

the mapping that needs to be stored on each system s is given by r(s), and is of type

TSQName 7→ (SysId × TSQName)

Acknowledgements The work reported in this chapter was supported by a grant
from IBM. The starting point was an earlier specification created by Tim Clement.
This specification has benefited greatly from the detailed comments of Carroll Morgan
and Ib Holm Sørensen.



Chapter 17

CICS message system

Ian Hayes

Abstract The following message system is based on the message handling in CICS.
The specification itself is an interesting example: it combines states (of input and
output devices), and gives a number of examples of the use of the piping operator,
‘>>’, on schemas.

17.1 Message output

We can represent a set of output devices by a mapping from a device name, from the
set

[Name]

to a sequence of messages, from the set

[Message]

that have been output to that device.

NOUT
noq : Name 7→ seqMessage

The operations on output that are discussed here neither create nor destroy de-
vices.

∆NOUT =̂ [NOUT ; NOUT ′ | domnoq ′ = domnoq ]

Sending a message to a device simply appends the message to the queue for that
device.

213



214

NSend 0
∆NOUT
n? : Name
m? : Message

n? ∈ domnoq ∧
noq ′ = noq ⊕ {n? 7→ noq(n?) a 〈m?〉}

17.2 Multiple destinations

A message may be sent to a set of destinations.

NSendM 0
∆NOUT
ns? : P Name
m? : Message

ns? ⊆ domnoq ∧
noq ′ = noq ⊕ {n : ns? • n 7→ noq(n) a 〈m?〉}

All of the names in ns? must correspond to valid output devices. The message is sent
to each device in ns?.

Theorem Given

ToSet =̂ [n? : Name; ns! : P Name | ns! = {n?}]
ToSet NSendM 0 =̂ ToSet >> NSendM 0

then

NSend 0 ⇔ ToSet NSendM 0

Recall that the schema operator ‘>>’ identifies the outputs (variables ending in ‘!’)
of its left operand with the inputs (variables ending in ‘?’) of its right operand; these
variables are hidden in the result. All other components are combined together as for
schema conjunction (∧).

17.3 Message input

We can represent a set of input devices by a mapping from a device name to a sequence
of messages yet to be input from that device.

NIN
niq : Name 7→ seqMessage

The operations on input described here neither create nor destroy devices.

∆NIN =̂ [NIN ; NIN ′ | domniq ′ = domniq ]



17.4. SEND AND RECEIVE 215

Receiving a message from a device simply removes it from the head of the input
queue for that device.

NReceive 0
∆NIN
n? : Name
m! : Message

m! = head(niq(n?)) ∧
niq ′ = niq ⊕ {n? 7→ tail(niq(n?))}

17.4 Send and receive

We can define an operation that both sends a message to a device and receives a
message from that device.

NSendReceive 0 =̂ NSend 0 ∧ NReceive 0

17.5 Combining input and output

We introduce NDEV to describe the combined input and output state for all of the
devices. If a device can be used for input then it must be able to be used for output.

NDEV
NIN
NOUT

domniq ⊆ domnoq

∆NDEV =̂ NDEV ∧ NDEV ′

Input and output operations preserve the output and input states respectively.

ΞNOUT =̂ [∆NDEV | θNOUT ′ = θNOUT ]
ΞNIN =̂ [∆NDEV | θNIN ′ = θNIN ]

The operations on the combined state follow.

NSend =̂ NSend 0 ∧ ΞNIN
NSendM =̂ NSendM 0 ∧ ΞNIN
NReceive =̂ NReceive 0 ∧ ΞNOUT

NSendReceive =̂ NSendReceive 0 ∧ ∆NDEV

17.6 Logical names

Rather than work with actual (physical) device names, as we have up to this point,
we would like to work with logical names, from the set

[LName]



216

The logical names are mapped into physical device names by the function ltop.

LtoP
ltop : LName 7→ Name

None of the operations discussed here modify the mapping from logical names to
physical names. Hence we will use the following schema:

ΞLtoP =̂ [LtoP ; LtoP ′ | θLtoP ′ = θLtoP ]

If a logical name corresponds to an actual device we perform the operation on
that device, otherwise we use the device with physical name console.

console : Name

MapName
ΞLtoP
dev : Name 7→ seqMessage
ln? : LName
n! : Name

ln? ∈ dom(ltop o
9 dev) ⇒ n! = ltop(ln?) ∧

ln? 6∈ dom(ltop o
9 dev) ⇒ n! = console

The operations on a single device become as follows:

LSend =̂ MapName[noq/dev ] >> NSend
LReceive =̂ MapName[niq/dev ] >> NReceive

LSendReceive =̂ MapName[niq/dev ] >> NSendReceive

17.7 Multiple logical destinations

To send a message to a set of logical names we need to map the set of logical names
into physical names. If none of the logical names correspond to a device we send the
message to the device with physical name console.

MapSet
ΞLtoP
lns? : P LName
ns! : P Name
NOUT

letnames == ltop(| lns? |) ∩ domnoq •
names = {} ⇒ ns! = {console} ∧
names 6= {} ⇒ ns! = names

The operation to send a message to a set of logical devices is

LSendM =̂ MapSet >> NSendM



17.8. DOMAINS OF THE OPERATIONS 217

Theorem Given

ToSetL =̂ [ln? : LName; lns! : P LName | lns! = {ln?}]
ToSetL LSendM =̂ ToSetL >> LSendM

then

LSend ⇔ ToSetL LSendM

17.8 Domains of the operations

In practice we would like all the operations to be total (defined for all inputs). Unfor-
tunately, this is not the case. If a name (or a set of names) does not correspond to an
actual device, then the name is translated to the special device console; if the console
does not exist, the operation is not defined. For the output operations, ensuring that
the console exists is a sufficient pre-condition for the operation to be defined (we also
need this pre-condition for input).

Pre =̂ [NDEV ; LtoP ; m? : Message | console ∈ domniq ]

Remember that domniq ⊆ domnoq , so console ∈ domnoq .

Theorems

Pre ⇒ preLSend
Pre ⇒ preLSendM

For the input operations we need the additional requirement that the queue of
messages yet to be input on the device is not empty.

PreIn =̂ [Pre; n? : Name | niq(n?) 6= 〈〉]

Theorems Given

MapName PreIn =̂ MapName[niq/dev ] >> PreIn

then

MapName PreIn ⇒ preLReceive
MapName PreIn ⇒ preLSendReceive

Acknowledgement This specification is based on a message system specified by
David Renshaw of IBM (UK) Laboratories, Hursley, England.



218



Part V

APPENDICES

219



220



Appendix A

Glossary: Z mathematical
notation

A.1 Definitions and declarations

Let x , x1, x2, . . . , xn ,X ,X1,X2, . . . ,Xn be identifiers and let T , T1, T2, . . . , Tn be
set-valued expressions.

LHS == RHS
Definition of LHS as equivalent to RHS . A definition is distinguished
from an equality (‘=’) syntactically by the use of the symbol ‘==’. A
definition defines the left side to be equivalent to the right side, while
an equality is a predicate that is either true or false.

LHS [X1,X2, . . . ,Xn ] == RHS
Generic definition of LHS , where X1,X2, . . . ,Xn are variables denoting
formal parameter sets. When the LHS is used the actual parameter sets
are supplied by placing them in square brackets after the use:

LHS [T1,T2, . . . ,Tn ]

Commonly the context uniquely determines the choice of parameter
sets; in these cases the parameter sets may be omitted.

x : T A declaration, x : T , introduces a new variable x of type T. This should
be distinguished from the membership test, x ∈ T , which is a predicate
that is either true or false.

x1 : T1; x2 : T2; . . . ; xn : Tn

List of declarations.

x1, x2, . . . , xn : T
== x1 : T ; x2 : T ; . . . ; xn : T

[X1,X2, . . . ,Xn ]
Introduction of basic types named X1,X2, . . . ,Xn . These are distinct
new types whose structure is not constrained by this introduction, but
may be constrained by predicates in the remainder of a specification.

The glossaries may be copied for educational purposes.

221



222

A.2 Axiomatic definitions

Let D be a list of declarations and P a predicate.
The following axiomatic definition introduces the variables in D with the types

as declared in D. These variables must also satisfy the predicate P. The scope of the
variables is the whole specification.

D

P

For example,

small , large : N

small < large

introduces two natural number variables small and large such that the value of small
is less than the value of large.

The predicate part of an axiomatic definition is optional. For example, a global
variable MaxSize may be introduced by the following axiomatic definition.

MaxSize : N

This variable may later be constrained by (global) predicates occurring in the speci-
fication.

MaxSize < 100

A.3 Generic definitions

Let D be a list of declarations, P a predicate and X1,X2, . . . ,Xn variable names
standing for generic sets.

The following generic definition is similar to an axiomatic definition, except that
the variables introduced are generic over the sets X1,X2, . . . ,Xn .

[X1,X2, . . .Xn ]
D

P

The declared variables must be uniquely defined by the predicate P .
For example, the definitions of head and tail on sequences are given by the follow-

ing:

[X ]
head : seq1 X → X
tail : seq1 X → X

∀ x : X ; s : seqX •
head (〈x 〉a s) = x ∧
tail (〈x 〉a s) = s

For s : seq1 N, the first element of s is given by head [N](s). As the type of s
uniquely determines the choice of generic parameter in this case, the parameter may
be elided: head(s).



A.4. LOGIC 223

A.4 Logic

Let P ,Q be predicates; D a declaration or a list of declarations; T , T1, . . . , Tn

set-valued expressions; x , y , x1, . . . , xn variables; and t , t1, . . . , tn expressions.

true, false Logical constants.

¬ P Negation: ‘not P ’.

P ∧ Q Conjunction: ‘P and Q ’.

P ∨ Q Disjunction: ‘P or Q or both’.

P ⇒ Q == (¬ P) ∨ Q
Implication: ‘P implies Q ’ or ‘if P then Q ’.

P ⇔ Q == (P ⇒ Q) ∧ (Q ⇒ P)
Equivalence: ‘P is logically equivalent to Q ’.

∀ x : T • P Universal quantification: ‘for all x in the set T , P holds’.
The scope of the variable x is the quantified predicate P . In Z, the
scope of quantifiers extends as far to the right as is possible and hence
the quantifier may need to be enclosed in parentheses to limit the scope.
All quantifiers in Z specify the type of the bound variable, and hence
explicitly define the values over which the quantification ranges. If the
set T is empty, then the quantification is vacuously true.

∃ x : T • P Existential quantification: ‘there exists an x in the set T such that P ’.
If the set T is empty then the quantification is false.

∃1 x : T • P == (∃ y : T • (∀ x : T • x = y ⇔ P))
Unique existence: ‘there exists a unique x in the set T such that P
holds’. Note that in the definition above, y is assumed to be a fresh
variable other than x and not occurring in P .

∀ x1 : T1; x2 : T2; . . . ; xn : Tn • P
‘For all x1 in T1, x2 in T2, . . . , and xn in Tn , P holds.’ Note that the set
expressions T1, . . . ,Tn may not refer to any of the variables x1, . . . , xn

being declared. All variables referenced in T1, . . . ,Tn have to be defined
globally to the whole quantified expression. This is to avoid ambiguity
because the same variable name could occur both in the declarations
and global to the scope of the quantifier.

∃ x1 : T1; x2 : T2; . . . ; xn : Tn • P
‘There exist x1 in T1, x2 in T2, . . . , and xn in Tn , such that P holds.’

∃1 x1 : T1; x2 : T2; . . . ; xn : Tn • P
‘There exist unique x1 in T1, unique x2 in T2, . . . , and unique xn in Tn ,
such that P holds.’

∀D | P • Q == ∀D • P ⇒ Q

∃D | P • Q == ∃D • P ∧ Q



224

∃1 D | P • Q == ∃1 D • P ∧ Q

P [t/x ] or P
[

t
x

]
Substitution: the predicate P with every free occurrence of the variable
x replaced by the expression t , e.g.
(x = y) [x + 1/x ] ⇔ (x + 1 = y)
Substitution can also be applied to expressions.

P [t1, . . . , tn/x1, . . . , xn ] or P
[

t1,...,tn
x1,...,xn

]
Simultaneous substitution of t1 for x1, . . . , tn for xn , e.g.
(x < y)

[
y,x
x ,y

]
⇔ (y < x )

t1 = t2 Equality between expressions.

t1 6= t2 == ¬ (t1 = t2)

A.5 Sets

Let X be a set; S and T be subsets of X ; T1, . . . , Tn set-valued expressions; t , t1,
. . . , tn expressions; x , x1, . . . , xn variables; P a predicate; and D declarations.

t ∈ S Set membership: ‘t is a member of S ’.

t 6∈ S == ¬ (t ∈ S )

S ⊆ T == (∀ x : S • x ∈ T )
Set inclusion.

S ⊂ T == S ⊆ T ∧ S 6= T
Strict set inclusion.

{} or ∅ The empty set.

{t1, t2, . . . , tn}
The set containing the values of expressions t1, t2, . . . , tn . Note that
duplication of values in the list is allowed but duplicates do not change
the value of the set.

{x : T | P} The set containing exactly those x in the set T for which P holds.

(t1, t2, . . . , tn)
Ordered n-tuple of t1, t2, . . . , tn .

T1 × T2 × . . .× Tn

Cartesian product: the set of all n-tuples such that the kth component
is of type Tk .

first(t1, t2) == t1

second(t1, t2) == t2



A.6. NUMBERS 225

{x1 : T1; x2 : T2; . . . ; xn : Tn | P}
The set of all n-tuples (x1, x2, . . . , xn) with each xk of type Tk such that
P holds.

{D | P • t} The set of values of the expression t for the variables declared in D
ranging over all values for which P holds. For example, given sets of
integers S and T the set of sums of pairs of integers, one taken from S
and one taken from T, such that the sum is strictly positive is given by
{n : S ; m : T | n + m > 0 • n + m}.

{D • t} == {D | true • t}

S ∩ T == {x : X | x ∈ S ∧ x ∈ T}
Set intersection.

S ∪ T == {x : X | x ∈ S ∨ x ∈ T}
Set union.

S \ T == {x : X | x ∈ S ∧ x 6∈ T}
Set difference.

P S Powerset: the set of all subsets of S . For example,
P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}.

P1 S == (P S ) \ {∅}
The set of all non-empty subsets of S .

F S Set of finite subsets of S .

F1 S == (F S ) \ {∅}
Set of finite non-empty subsets of S .⋂

SS == {x : X | (∀S : SS • x ∈ S )}
Intersection of a set of sets; SS is a set containing as its members subsets
of X , i.e. SS : P(P X ).⋃

SS == {x : X | (∃S : SS • x ∈ S )}
Union of a set of sets; SS : P(P X ).

#S Size (number of members) of a finite set.

A.6 Numbers

Z The set of integers (positive, zero and negative).

N == {n : Z | n ≥ 0}
The set of natural numbers (non-negative integers).

N1 == N \ {0}
The set of strictly positive natural numbers.



226

m . . n == {k : Z | m ≤ k ∧ k ≤ n}
The set of integers between m and n inclusive.

min S Minimum of a set; for S : P1 Z
min S ∈ S ∧ (∀ x : S • x ≥ min S ).
Note, for an infinite set of numbers, such a minimum may not exist, in
which case min is not defined.

max S Maximum of a set; for S : P1 Z
max S ∈ S ∧ (∀ x : S • x ≤ max S ).
Note, for an infinite set of numbers, such a maximum may not exist, in
which case max is not defined.

R The set of real numbers.

A.7 Binary relations

A binary relation is modelled by a set of ordered pairs. Hence operators defined
for sets can be used on relations. Let X , Y and Z be sets; x , x1, . . . , xn : X ;
y , y1, y2, . . . , yn : Y ; S be a subset of X ; T be a subset of Y ; and R a relation
between X and Y .

X ↔ Y == P(X ×Y )
The set of relations between X and Y . The set X is referred to as the
source of the relation R and the set Y as its destination.

x R y == (x , y) ∈ R
x is related by R to y . The name of a relation may either be an identifier
or an infix operator symbol. A relation with an identifier name may be
used as an infix operator by underlining it. For an infix relation opera-
tor, the whole relation may be referred to by placing underscores either
side of the symbol and enclosing that in parentheses. For example, the
whole relation corresponding to the infix operator ‘<’ is referred to by
‘( < )’, so (x < y) ⇔ (x , y) ∈ ( < ).

x 7→ y == (x , y)

{x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn}
== {(x1, y1), (x2, y2), . . . , (xn , yn)}
The relation relating x1 to y1, x2 to y2, . . . , and xn to yn .

domR == {x : X | (∃ y : Y • x R y)}
The domain of a relation: the set of x components that are related to
some y.

ranR == {y : Y | (∃ x : X • x R y)}
The range of a relation: the set of y components that some x is related
to.

R1
o
9 R2 == {x : X ; z : Z | (∃ y : Y • x R1 y ∧ y R2 z )}

Forward relational composition; R1 : X ↔ Y ; R2 : Y ↔ Z . The
composition relates x to z if there is some y such that x is related to y
by R1 and y is related to z by R2.



A.7. BINARY RELATIONS 227

R1 ◦ R2 == R2
o
9 R1

Relational composition. This form is primarily used when R1 and R2

are functions.

R∼ == {y : Y ; x : X | x R y}
Transpose of a relation R. R∼ relates y to x if and only if R relates x
to y.

idS == {x : S • x 7→ x}
Identity function on the set S .

Rk The relation R composed with itself k times. This operator (sometimes
called iteration) is only defined for homogeneous relations: relations
that have the same source and destination sets. Given a homogeneous
relation R : X ↔ X and k : N
R0 = idX and Rk+1 = Rk o

9 R.

R+ ==
⋃
{n : N1 • Rn}

=
⋂
{Q : X ↔ X | R ⊆ Q ∧ Q o

9 Q ⊆ Q}
Transitive closure of relation R. A pair (x1, xn) is in the relation R+ if
and only if there exists a finite sequence of values x1, x2, ..., xn , where
n ≥ 2, such that (x1, x2) ∈ R, (x2, x3) ∈ R, ... and (xn−1, xn) ∈ R.

R∗ ==
⋃
{n : N • Rn}

= R+ ∪ idX
=

⋂
{Q : X ↔ X | idX ⊆ Q ∧ R ⊆ Q ∧ Q o

9 Q ⊆ Q}
Reflexive transitive closure.

R(| S |) == {y : Y | (∃ x : S • x R y)}
Image of the set S through the relation R.

S C R == {x : X ; y : Y | x ∈ S ∧ x R y}
Domain restriction: the relation R with its domain restricted to the set
S .

S −C R == (X \ S ) C R
Domain exclusion: the relation R with the members of S excluded from
its domain.

R B T == {x : X ; y : Y | x R y ∧ y ∈ T}
Range restriction to T .

R −B T == R B (Y \ T )
Range exclusion: the relation R with the members of T excluded from
its range.

R1 ⊕ R2 == ((domR2)−C R1) ∪ R2

Overriding; R1,R2 : X ↔ Y .



228

A.8 Functions

A function is a relation with the property that each member of its domain is associated
with a unique member of its range. As functions are relations, all the operators defined
above for relations also apply to functions. Let X and Y be sets, and T be a subset
of X ; and f a function from X to Y .

f t The function f applied to the expression t . A function f is a set of pairs
with each member of its domain associated with a unique member of
its range. f t is only defined provided t ∈ dom f , and its value is the
unique value in the range associated with the value t in its domain:
f t = y ⇔ (t , y) ∈ f .

X 7→ Y == {f : X ↔ Y | (∀ x : dom f • (∃1 y : Y • x f y))}
The set of partial functions from X to Y . Note that the domain of
a partial function does not necessarily contain the whole of X , but it
may.

X → Y == {f : X 7→ Y | dom f = X }
The set of total functions from X to Y .

X 7� Y == {f : X 7→ Y | (∀ y : ran f • (∃1 x : X • x f y))}
The set of partial one-to-one functions (partial injections) from X to
Y .

X � Y == {f : X 7� Y | dom f = X }
= (X 7� Y ) ∩ (X → Y )
The set of total one-to-one functions (total injections) from X to Y .

X 7→→ Y == {f : X 7→ Y | ran f = Y }
The set of partial onto functions (partial surjections) from X to Y .

X →→ Y == (X 7→→ Y ) ∩ (X → Y )
The set of total onto functions (total surjections) from X to Y .

X �→ Y == (X →→ Y ) ∩ (X � Y )
The set of total one-to-one onto functions (total bijections) from X to
Y .

X 7 7→ Y == {f : X 7→ Y | f ∈ F(X ×Y )}
The set of finite partial functions from X to Y .

X 7 7� Y == (X 7 7→ Y ) ∩ (X 7� Y )
The set of finite partial one-to-one functions from X to Y .

(λ x : T | P • t)
== {x : T | P • x 7→ t}
Lambda abstraction: the function that, given an argument x in the set
T such that P holds, gives a result which is the value of the expression
t .

(λ x1 : T1; . . . ; xn : Tn | P • t)
== {x1 : T1; . . . ; xn : Tn | P • (x1, . . . , xn) 7→ t}



A.9. ORDERS 229

disjoint == {S : I 7→ P X | ∀ i , j : domS • i 6= j ⇒ S (i) ∩ S (j ) = ∅}
Pairwise disjoint, where I is a set and S an indexed family of subsets
of X .

S partitionsT
== disjointS ∧

⋃
ranS = T

A.9 Orders

reflexiveX == {R : X ↔ X | ∀ x : X • x R x}
The set of reflexive relations on X .

antisymmetricX
== {R : X ↔ X | ∀ x , y : X • x R y ∧ y R x ⇒ x = y}
The set of antisymmetric relations on X .

transitiveX == {R : X ↔ X | ∀ x , y , z : X • x R y ∧ y R z ⇒ x R z}
The set of transitive relations on X .

preorderX == reflexiveX ∩ transitiveX
The set of preorders on X .

partial orderX
== reflexiveX ∩ antisymmetricX ∩ transitiveX
The set of partial orders on X .

total orderX
== {R : partial orderX | ∀ x , y : X • x R y ∨ y R x}
The set of total orders on X . Note that the term total when applied
to orders does not have the same meaning as the term total applied to
relations. A total order is not necessarily a total relation.

A.10 Sequences

Let X be a set; A and B be sequences with elements taken from X ; and a1, . . . , an ,
b1, . . . , bn expressions of type X .

seqX == {A : N1 7→ X | (∃n : N • domA = 1..n)}
The set of finite sequences whose elements are drawn from X .

#A The length of sequence A. (This is just ‘#’ on the set representing the
sequence.)

〈〉 == {}
The empty sequence.

seq1 X == {s : seqX | s 6= 〈〉}
The set of non-empty sequences.



230

〈a1, . . . , an〉 = {1 7→ a1, . . . ,n 7→ an}

〈a1, . . . , an〉a 〈b1, . . . , bm〉
= 〈a1, . . . , an , b1, . . . , bm〉
Concatenation.
〈〉a A = A a 〈〉 = A.

head A The first element of a non-empty sequence:
A 6= 〈〉 ⇒ head A = A(1).

tail A All but the head of a non-empty sequence:
tail (〈x 〉a A) = A.

last A The final element of a non-empty sequence:
A 6= 〈〉 ⇒ last A = A(#A).

front A All but the last of a non-empty sequence:
front (A a 〈x 〉) = A.

rev 〈a1, a2, . . . , an〉
= 〈an , . . . , a2, a1〉
Reverse of a sequence.
rev 〈〉 = 〈〉.

a/AA = AA(1) a . . . a AA(#AA)
Distributed concatenation; where AA : seq(seq(X )).
a/〈〉 = 〈〉.

o
9/AR = AR(1) o

9 . . . o
9 AR(#AR)

Distributed relational composition; where
AR : seq(X ↔ X ).
o
9/〈〉 = idX .

⊕/AR = AR(1)⊕ . . .⊕AR(#AR)
Distributed override; where AR : seq(X ↔ Y ).
⊕/〈〉 = {}.

A ⊆ B == (∃C : seqX • A a C = B)
A is a prefix of B .

A suffixB == (∃C : seqX • C a A = B)
A is a suffix of B .

A inB == (∃C ,D : seqX • C a A a D = B)
Contiguous subsequence.

squash(f ) Convert a finite function, f : Z 7 7→ X , into a sequence by squash-
ing its domain. That is, squash({}) = 〈〉, and if f 6= {} then
squash(f ) = 〈f (i)〉 a squash({i} −C f ), where i = min(dom f ). For
example, squash({2 7→ A, 27 7→ C , 4 7→ B}) = 〈A,B ,C 〉.



A.11. BAGS 231

S � A == squash(S C A)
Restrict the sequence A to those items whose index is in the set S , for
S : P N. The result is a sequence.

A � T == squash(A B T )
Restrict the range of the sequence A to the set T , for T : P X . The
result is a sequence.

A.11 Bags

Let B ,B1,B2, . . . be bags with elements from the set X ; t , t1, t2, . . . , tn be expressions
of type X ; x , x1, x2, . . . , xn be variables; and n, k1, k2, . . . , kn be integers.

bag X == X 7→ N1

The set of bags whose elements are drawn from the set X . Only positive
frequencies are recorded.

{| |} == { }
The empty bag.

[[t 7→ n]] The bag which contains (only) t , n times.
= {t 7→ n}, if n 6= 0
= {| |}, if n = 0.

[[t1 7→ k1, t2 7→ k2, . . . , tn 7→ kn ]]
== [[t1 7→ k1]] ] [[t2 7→ k2]] ] · · · ] [[tn 7→ kn ]]
Note that with this definition we do not require the tj to be distinct;
for example,
[[t 7→ k1, t 7→ k2]] = [[t 7→ k1]] ] [[t 7→ k2]]
= [[t 7→ k1 + k2]].

[[t1, t2, . . . , tn ]]
== [[t1 7→ 1, t2 7→ 1, . . . , tn 7→ 1]]
The bag containing the elements t1, t2, . . . , tn with the frequency in
which they occur in that list.

B ] t The frequency of occurrence of the value of t in the bag B :
(t ∈ domB ⇒ B ] t = B(t)), and
(t 6∈ domB ⇒ B ] t = 0).

count(B)(t) The frequency of occurrence of the value of t in the bag B :
(t ∈ domB ⇒ count(B)(t) = B(t)), and
(t 6∈ domB ⇒ count(B)(t) = 0).

t inB == B ] t 6= 0
Test whether the element t occurs in the bag B with non-zero frequency.

B1 ] B2 The sum of two bags. Each element of the sum of the bags has a
frequency which is the sum of its frequencies in the two bags:
(B1 ] B2) ] x = (B1 ] x ) + (B2 ] x ).



232

B1 ∩∗ B2 The (pairwise) product of two bags. Each element of the product has
a frequency which is the product of its frequencies in the two bags:
(B1 ∩∗ B2) ] x = (B1 ] x ) ∗ (B2 ] x ).

n ⊗ B An integer constant times a bag. Each element of the product has a
frequency which is the product of its frequency in B and the constant:
(n ⊗ B) ] x = n ∗ (B ] x ).

B1 u B2 The pairwise minimum of two bags.
(B1 u B2) ] x = min{B1 ] x ,B2 ] x}.

B1 t B2 The pairwise maximum of two bags.
(B1 t B2) ] x = max{B1 ] x ,B2 ] x}.

B1v B2 == (∀ x : X • (B1 ] x ) ≤ (B2 ] x )).
B1 is a sub-bag of B2. One bag is contained in another if the frequency
of every element in the first bag does not exceed its corresponding fre-
quency in the second bag.

B1 @ B2 == B1v B2 ∧ B1 6= B2
B1 is a proper sub-bag of B2.

setof B == {x : X | B ] x 6= 0}
The set of items in the bag B that occur with non-zero frequency.

bagof S The bag formed from the set S by including all the elements of S (and
no others) with a frequency of one.
dom(bagof S ) = S ∧ ran(bagof S ) = {1}.

bagf X == {B : bag X | (setof B) ∈ F X }
The set of all finite bags: those bags with only a finite number of
elements with non-zero frequency.

sizeB The size of a finite bag is the total number of items in the bag taking
into account the frequency of occurrence of each item.

size{| |} = 0
size[[t ]] = 1
size(B1 ] B2) = (sizeB1) + (sizeB2)
size(n ⊗ B) = n ∗ sizeB∑

B The sum of all the items in the finite bag of numbers B taking into
account their frequency in B .∑

{| |} = 0∑
[[t ]] = t∑
(B1 ] B2) = (

∑
B1) + (

∑
B2)∑

(n ⊗ B) = n ∗
∑

B

items(R) The bag of items which occur in the range of the relation R. The
frequency of each item is the number of domain elements that are paired
with the item in R. The relation must be ‘finitary’, that is, for each



A.12. GENERALISED BAGS 233

element in the range of R there are only finitely many domain elements
related to it by R. Given R : W ↔ X

R ∈ dom items ⇔
(∀ x : ranR • {w : domR | (w , x ) ∈ R} ∈ F W )

R ∈ dom items ⇒
(items R) ] x = #{w : domR | (w , x ) ∈ R}

As both functions and sequences can be considered as special cases of
relations, items can be used on functions and sequences.

[[x : B | P • t ]]
The bag of all the values of the expression t , for x ranging over all
the items in the bag B such that the predicate P holds. If a value of
x occurs multiple times in the bag B , then we add the corresponding
value of t that many times to the resultant bag;

[[x : B | P • t ]] ] y =∑
items(λ x : setof B | P ∧ y = t • B ] x )

A bag comprehension is only well-defined if each value of t occurs only
finitely often. If the expression t is omitted, the default expression is x .

[[x1 : B1; x2 : B2; . . . ; xn : Bn | P • t ]]
Multiple variables may be declared in a bag comprehension; each de-
clared variable ranges over the values in the associated bag with the fre-
quency of occurrence of the value in that bag. If the expression t is omit-
ted, the default expression is the tuple of the variables: (x1, x2, . . . , xn).

[[D • t ]] == [[D | true • t ]]
For example, if B : bag X and C : bag Y then

[[x : B ; y : C • (x , y)]],

is of type bag(X×Y ), and the pair (x , y) occurs in this bag (B]x )∗(C ]y)
times; this is the bag generalisation of Cartesian product.⊎

BB The distributed bag sum of the bag of bags BB taking into account the
frequency of each bag in BB as well as the frequencies of the items in
the individual bags. Given BB : bag(bag X )
(
⊎

BB) ] x =
∑

[[B : BB • B ] x ]].

A.12 Generalised bags

Bags can be generalised to allow both positive and negative frequencies. All the
operators from the previous section can be generalised to work with bags allowing
negative frequencies. The operator definitions given in the previous section have been
written so that they are appropriately defined if occurrences of bag are replaced by
bag. See [15] for further details and examples.



234

bag X == X 7→ (Z \ {0})
The set of generalised bags whose elements are drawn from the set X .
Both positive and negative frequencies are allowed in generalised bags.

−B The negation of bag B . Each element of the negation has a frequency
which is the negation of its frequencies in B :
(−B) ] x = −(B ] x ).

B1 ∪- B2 The difference between two bags. Each element of the difference be-
tween the bags has a frequency which is the difference of its frequencies
in the two bags:
(B1 ∪- B2) ] x = (B1 ] x )− (B2 ] x ).

pbagof B == [[p : B | B ] p > 0]]
The bag with only positive frequency items included.

A.13 Free type definitions

X ::= ident1 | ident2〈〈S 〉〉

Free types allow a new free set X to be introduced as well as defining constructors to
generate elements of the type. The constructors may either be an identifier (ident1),
which is an element of the new type, or a constructor function (ident2), which is a
function taking an argument of type S and returning an element of the new type.
Distinct values of arguments to constructor functions return distinct elements of the
free type, and distinct constructors generate distinct elements. The constructors
generate all the elements of the type.

Free types are useful for defining recursive structures, such as trees. The following
example defines an arithmetic expression tree:

OP ::= plus | minus | times | divide
EXP ::= const〈〈N〉〉

| binop〈〈OP × EXP × EXP〉〉

Type OP contains four distinct elements which may be referenced by the identifiers
plus, minus, times and divide. The type EXP describes an expression tree which is
either a constant, natural number, or an expression consisting of a binary operator
and two sub-expression trees.



Appendix B

Glossary: Z schema notation

B.1 Schema definition

A schema groups together a set of declarations of variables and a predicate relating
the variables. If the predicate is omitted it is taken to be true, i.e. the variables are
not further restricted. There are two ways of writing schemas: vertically, for example,

S
x : Z
y : P Z

x ≤ #y

and horizontally, for the same example,

S =̂ [x : Z; y : P Z | x ≤ #y ]

As well as explicit declarations of variables, we allow schemas to be used in declara-
tions as a shorthand for the declaration of the the variables in the schema constrained
by the predicate of the schema. For example, schemas may be used in the declaration
part of ∀, λ, {...}, etc.:

(∀S • y 6= {}) ⇔ (∀ x : Z; y : P Z | x ≤ #y • y 6= {})

{S} Stands for the set of objects described by schema S . In declarations we
usually write w : S as an abbreviation for w : {S}, e.g. w : S declares
a variable w with components x (an integer) and y (a set of integers)
such that x ≤ #y .

B.2 Schema operators

Let S be defined as above and w : S .

w .x == (λS • x )(w)
Projection functions: the component names of a schema may be used
as projection (or selector) functions, e.g. w .x is w ’s x component and
w .y is its y component; of course, the predicate ‘w .x ≤ #w .y ’ holds.

235



236 Appendix B

θS The (unordered) tuple formed from a schema’s variables, e.g. θS con-
tains the named components x and y . ‘θ’ is commonly used to equate
the before and after state components of an operation, e.g. θS ′ = θS is
equivalent to x ′ = x ∧ y ′ = y . For a usage of θS to be well-defined, the
components of S must be defined in the enclosing scope.

predS The predicate part of a schema, e.g. predS is ‘x ≤ #y ’.

Compatibility
Two schemas are compatible if the declared sets of each variable com-
mon to the declaration parts of both the schemas are equal. In addition,
any global variables referenced in predicate part of one of the schemas
must not have the same name as a variable declared in the other schema;
this restriction is to avoid global variables being captured by the decla-
rations.

Inclusion A schema S may be included within the declarations of a schema R, in
which case the declarations of S are merged with the other declarations
of R (variables declared in both S and R must be compatible) and the
predicates of S and R are conjoined. For example,

R
S
z : Z

z < x

is equivalent to

R
x , z : Z
y : P Z

x ≤ #y ∧ z < x

The included schema (S) may not refer to global variables that have
the same name as one of the declared variables of the including schema
(R).

S [new/old ] or S
[
new
old

]
Renaming of components: the schema S in which the component old has
been renamed to new both in the declaration and every free occurrence
in the predicate. For example,
S [z/x ] is [z : Z; y : P Z | z ≤ #y ], and
S

[
y,x
x ,y

]
is [y : Z; x : P Z | y ≤ #x ].

In the second case above, the renaming is simultaneous. As usual, the
renaming in the predicate might entail consequential changes of bound
variables. If the renaming leads to two or more previously distinct
variables ending up with the same name, the renaming is valid only if
the variables all have the same type; the set of variables is replaced by
a single variable with the new name.



B.2. SCHEMA OPERATORS 237

Decoration Systematic renaming of the variables declared in a schema. Decoration
with subscript, superscript, prime, etc. For example, S ′ is [x ′ : Z; y ′ :
P Z | x ′ ≤ #y ′]. Multiple decorations of a single schema are allowed,
e.g. S ′′.

¬ S The schema S with its predicate part negated. For example,
¬ S is [x : Z; y : P Z | ¬ (x ≤ #y)].

S ∧ T The schema formed from schemas S and T by merging their declarations
and conjoining (and-ing) their predicates. The two schemas must be
compatible (see above). Given

T
x : Z
z : P Z

x ∈ z

S ∧ T is

S ∧ T
x : Z
y : P Z
z : P Z

x ≤ #y ∧ x ∈ z

S ∨ T The schema formed from schemas S and T by merging their declara-
tions and disjoining (or-ing) their predicates. The two schemas must
be compatible (see above). For example, S ∨ T is

S ∨ T
x : Z
y : P Z
z : P Z

x ≤ #y ∨ x ∈ z

S ⇒ T The schema formed from schemas S and T by merging their declarations
and taking ‘predS ⇒ predT ’ as the predicate. The two schemas must
be compatible (see above). For example, S ⇒ T is

S ⇒ T
x : Z
y : P Z
z : P Z

x ≤ #y ⇒ x ∈ z

S ⇔ T The schema formed from schemas S and T by merging their declarations
and taking ‘predS ⇔ predT ’ as the predicate. The two schemas must
be compatible (see above). For example, S ⇔ T is



238 Appendix B

S ⇔ T
x : Z
y : P Z
z : P Z

x ≤ #y ⇔ x ∈ z

S \ (v1, v2, . . . , vn)
Hiding: the schema S with variables v1, v2, . . . , vn hidden – the variables
listed are removed from the declarations and are existentially quantified
in the predicate. For example, S \ (x ) is

S \ (x )
y : P Z

(∃ x : Z • x ≤ #y)

S � (v1, v2, . . . , vn)
Projection: The schema S with any variables that do not occur in the
list v1, v2, . . . , vn hidden – the variables are removed from the decla-
rations and are existentially qualified in the predicate. For example,
(S ∧ T ) � (x , y) is

(S ∧ T ) � (x , y)
x : Z
y : P Z

(∃ z : P Z • x ≤ #y ∧ x ∈ z )

The list of variables may be replaced by a schema; the variables declared
in the schema are used for projection.

∃D • S Existential quantification of a schema. The variables declared in the
schema S that also appear in the declarations D are removed from the
declarations of S. The predicate of S is existentially quantified over D.
For example, (∃ x : Z • S ) is the following schema:

∃ x : Z • S
y : P Z

∃ x : Z • x ≤ #y

The declarations may include schemas. For example,

∃S • T
z : P Z

∃S • x ∈ z

This is equivalent to



B.3. OPERATION SCHEMAS 239

∃S • T
z : P Z

∃ x : Z; y : P Z | x ≤ #y • x ∈ z

∀D • S Universal quantification of a schema. The variables declared in the
schema S that also appear in the declarations D are removed from the
declarations of S. The predicate of S is universally quantified over D.
For example, (∀ x : Z • S ) is the following schema.

∀ x : Z • S
y : P Z

∀ x : Z • x ≤ #y

The declarations may include schemas. For example,

∀S • T
z : P Z

∀S • x ∈ z

This is equivalent to

∀S • T
z : P Z

∀ x : Z; y : P Z | x ≤ #y • x ∈ z

B.3 Operation schemas

The following conventions are used for variable names in those schemas that represent
operations, i.e. are written as descriptions of operations on some state:

undashed – state before the operation;

dashed – state after the operation;

ending in ‘?’ – inputs to (arguments for) the operation; and

ending in ‘!’ – outputs from (results of) the operation.

The basename of a name is the name with all decorations removed.

∆S =̂ S ∧ S ′

Change of state schema: this is a default definition for ∆S . In some
specifications it is useful to have additional constraints on the change
of state schema. In these cases ∆S can be explicitly defined.

ΞS =̂ [∆S | θS ′ = θS ]
No change of state schema.



240 Appendix B

B.4 Operation schema operators

preS Precondition: the after-state components (dashed) and the outputs
(ending in ‘!’) are hidden, e.g. given,

S
x?, s, s ′, y ! : N

s ′ = s − x? ∧ y ! = s ′

preS is

preS
x?, s : N

∃ s ′, y ! : N •
s ′ = s − x? ∧ y ! = s ′

Because, given the declarations above,

(∃ s ′, y ! : N • s ′ = s − x? ∧ y ! = s ′) ⇔ s ≥ x?

the predicate can be simplified.

preS
x?, s : N

s ≥ x?

S ⊕ T =̂ (S ∧ ¬ preT ) ∨ T
Overriding: for example, given S above and T ,

T
x?, s, s ′ : N

s ≤ x? ∧ s ′ = s + x?

S ⊕ T is

S ⊕ T
x?, s, s ′, y ! : N

s ′ = s − x? ∧ y ! = s ′ ∧
¬ (∃ s ′ : N • s ≤ x? ∧ s ′ = s + x?)

∨
s ≤ x? ∧ s ′ = s + x?

Because, given the declarations above,

(∃ s ′ : N • s ≤ x? ∧ s ′ = s + x?) ⇔ s ≤ x?

the predicate can be simplified.



B.4. OPERATION SCHEMA OPERATORS 241

S ⊕ T
x?, s, s ′, y ! : N

s > x? ∧ s ′ = s − x? ∧ y ! = s ′

∨
s ≤ x? ∧ s ′ = s + x?

S o
9 T Schema composition: if we consider an intermediate state that is both

the final state of the operation S and the initial state of the operation
T then the composition of S and T is the operation that relates the
initial state of S to the final state of T through the intermediate state.
To form the composition of S and T we take the pairs of after-state
components of S and before-state components of T that have the same
basename, rename each pair to a new variable, take the conjunction of
the resulting schemas, and hide the new variables. For example, S o

9 T
is

S o
9 T

x?, s, s ′, y ! : N

(∃ ss : N •
ss = s − x? ∧ y ! = ss
∧ ss ≤ x? ∧ s ′ = ss + x?)

which simplifies to

S o
9 T

x?, s, s ′, y ! : N

y ! = s − x? ∧ s − x? ≤ x? ∧ s ′ = s

Note that the composition of two schemas using the specifier’s semi-
colon, S o

9 T , is not the same as sequential composition in programming
languages using the programmer’s semicolon. The difference arises if
the result produced by the S is not an acceptable input to T, i.e. it
does not satisfy preT . In a programming language this would abort,
but with the specifier’s semicolon this would only rule out the inter-
mediate state; if there are intermediate states that are acceptable to T
then one of them must be used.

S >> U Piping: this schema operation is similar to schema composition; the
difference is that, rather than identifying the after-state components of
S with the before-state components of U , the output components of S
(ending in ‘!’) are identified with the input components of U (ending
in ‘?’) that have the same basename. For example, if U is the schema

U
y?, u, u ′, z ! : N

y? 6= 0 ∧ u ′ = u + y? ∧ z ! = u ′



242 Appendix B

then S >> U is the following schema:

S >> U
x?, s, u, s ′, u ′, z ! : N

(∃ yy : N •
s ′ = s − x? ∧ yy = s ′ ∧
yy 6= 0 ∧ u ′ = u + yy ∧ z ! = u ′)

This simplifies to the following schema:

S >> U
x?, s, u, s ′, u ′, z ! : N

s ′ = s − x? ∧
s ′ 6= 0 ∧ u ′ = u + s ′ ∧ z ! = u ′

In the above example the state components of the two schemas are
disjoint. If the state components are not disjoint then the effect on the
state components is that of schema conjunction.



Bibliography

[1] J.-R. Abrial. Formal programming. Private manuscript, Paris, 1982. 42

[2] R. Biekert and B. Janssen. The implementation of a file system for the open
distributed operating system Amoeba. Informatica rapport, Vrije Universitiet,
Amsterdam, 1983. 149

[3] D. Bjørner, C.A.R. Hoare, and H. Langmaack, editors. VDM and Z – Formal
Methods in Software Development, volume 428 of Lecture Notes in Computer
Science. VDM-Europe, Springer-Verlag, Berlin, 1990. xvi, 245

[4] B.W. Boehm. Software Engineering Economics. Prentice Hall, Englewood Cliffs,
NJ, 1981. 190

[5] Jonathan P. Bowen, editor. Proc. Z Users Meeting, Oxford, UK, December 1987.
Oxford University Computing Laboratory. xvi

[6] Jonathan P. Bowen, editor. Proc. Third Annual Z Users Meeting, Oxford, UK,
December 1988. Oxford University Computing Laboratory. xvi

[7] S.M. Brien. Z Base Standard – Version 0.5. Oxford University Computing
Laboratory ZIP/PRG/92/92, March 1992. 191

[8] B.P. Collins, J.E. Nicholls, and I.H. Sørensen. Introducing formal methods:
the CICS experience with Z. Technical Report TR12.260, IBM Hursley Park,
December 1987. 183, 192

[9] S. Croxall, P.J. Lupton, and J.B. Wordsworth. A formal specification of the CPI
Communications. Technical Report TR12.277, IBM Hursley Park, December
1990. 194

[10] E.W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8): 453–457, August 1975. 186

[11] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs,
NJ, 1976. 186

[12] R. B. Gimson. A file package – user manual. Distributed Computing Project
working paper, Programming Research Group, Oxford University, 1983. 149

[13] G. Goos and J. Hartmanis, editors. VDM – The Way Ahead. Proc. 2nd VDM-
Europe Symposium, volume 328 of Lecture Notes in Computer Science. VDM-
Europe, Springer-Verlag, Berlin, 1988. xvi

243



244 BIBLIOGRAPHY

[14] D. Gries. The Science of Programming. Springer-Verlag, Berlin, 1981. 186

[15] I. J. Hayes. A generalisation of bags in Z. In J. E. Nicholls, editor, Z User
Workshop: Proceedings of the Fourth Annual Z User Meeting, Oxford, December
1989, Workshops in Computing, pages 113–127. Springer, 1990. 233

[16] I. J. Hayes and L. P. Wildman. Towards libraries for Z. In Z User Workshop:
Proceedings of the Seventh Annual Z User Meeting, London, December, 1992. 74

[17] I.J. Hayes. Applying formal specification to software development in industry.
IEEE Trans. Software Engng, SE-11(2): 169–178, 1985. Also Chapter 13 of this
volume. 183, 198, 199

[18] I.J. Hayes, He Jifeng, C.A.R. Hoare, C.C. Morgan, J.W. Sanders, I.H. Sørensen,
J.M. Spivey, and B. Sufrin. Data refinement refined. Oxford University Com-
puting Laboratory, May 1985. 191

[19] C. A. R. Hoare. Professionalism. BCS Comput. Bull., 2(29): 2–4, September
1981. Invited talk given at BCS ’81. 163

[20] C. A. R. Hoare. Programming is an engineering profession. Technical Mono-
graph 27, Programming Research Group, Oxford University, 1982. Also pub-
lished in [22]. 42, 184

[21] C. A. R. Hoare. Specifications, programs and implementations. Technical Mono-
graph PRG-29, Programming Research Group, Oxford University, 1982. 99

[22] C. A. R. Hoare. Programming is an engineering profession. In C. B. Jones, editor,
Essays in Computing Science, pages 315–324. Prentice Hall, Hemel Hempstead,
1989. 244

[23] Ib Holm Sørensen. Specification of a simple assembler. CICS Project working
paper, Programming Research Group, Oxford University, 1982. 136

[24] I.S.C. Houston and J.B. Wordsworth. A Z specification of part of the CICS file
control API. Technical Report TR12.272, IBM Hursley Park, February 1990.
194

[25] IBM Corporation. CICS/ESA Application Programmer’s Reference. SC33-0676.
196, 197

[26] IBM Corporation. CICS/ESA Application Programming Guide. SC33-0675. 197

[27] IBM Corporation. CICS/ESA General Information. GC33-0155. 183

[28] IBM Corporation. OS PL/I Checkout and Optimising Compilers: Language
reference manual, 1976. 169

[29] IBM Corporation. CICS/OS/VS Version 1 Release 5, Application Programmer’s
Reference Manual (Command level), 1980. 168, 179

[30] IBM Corporation. CICS/VS General Information, 1980. 166

[31] ICL. Reference Manual for the ICL Data Dictionary System (DDS.600), May
1982. ICL Document RPO120. 100



BIBLIOGRAPHY 245

[32] He Jifeng, C.A.R. Hoare, and J.W. Sanders. Data refinement refined: resumé.
In B. Robinet and R. Wilhelm, editors, European Symposium on Programming
ESOP86, volume 213 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1986. 191

[33] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall, Hemel
Hempstead, 1980. 42, 99

[34] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, Hemel
Hempstead, 2nd edition, 1990. xvi

[35] C. B. Jones and R. C. F. Shaw, editors. Case Studies in Systematic Software
Development. Prentice Hall, Hemel Hempstead, 1990. xvi

[36] S. King, I.H. Sørensen, and J.C.P. Woodcock. Z : Grammar and concrete and
abstract syntaxes. Technical Report PRG-68, Programming Research Group,
Oxford, 1988. 191

[37] Steve King. Z and the refinement calculus. In Bjørner et al. [3], pages 164–188.
xvi

[38] J. Lions. UNIX operating system source code level 6. Technical report, Depart-
ment of Computer Science, University of NSW, Sydney, Australia, 1977. 42

[39] P.J. Lupton. Promoting forward simulation. In Nicholls [48]. 198

[40] C.C. Morgan. Mailbox communication in Pascal-M. Distributed Computing
Project working paper, Programming Research Group, Oxford University, 1982.
67

[41] C.C. Morgan. Specification of the Cambridge model distributed system name
service. Distributed Computing Project working paper, Programming Research
Group, Oxford University, 1982. 67

[42] C.C. Morgan. Specification of a communication system. In Y. Paker and J.-P.
Verjus, editors, Distributed Computing Systems: Synchronisation, Control, and
Communication. Academic Press, 1983. 29

[43] C.C. Morgan. Using mathematics in user manuals. Distributed Computing
Project technical report, Programming Research Group, Oxford University, 1983.
179

[44] C.C. Morgan. Schemas in Z: A preliminary reference manual. Distributed Com-
puting Project report, Programming Research Group. Oxford University, March
1984. This is a historical reference; for a more up-to-date treatment of Z schemas
see [57]. 13

[45] C.C. Morgan. Programming from Specifications. International Series in Com-
puter Science. Prentice Hall, Hemel Hempstead, 1990. xvi

[46] C.C. Morgan and B.A. Sufrin. Specification of the UNIX file system. IEEE
Trans. Software Engng, SE-10(2): 128–142, March 1984. Also Chapter 4 of this
volume. 99



246 BIBLIOGRAPHY

[47] R. Needham and A. Herbert. The Cambridge file service. In The Cambridge
Distributed Computing System, pages 41–63. Addison-Wesley, Reading, Mass.,
1982. 149

[48] J.E. Nicholls, editor. Z User Workshop, Oxford 1989, Workshops in Computing.
Springer-Verlag, Berlin, 1990. xvi, 245, 247

[49] J.E. Nicholls, editor. Z User Workshop, Oxford 1990, Workshops in Computing.
Springer-Verlag, Berlin, 1991. xvi

[50] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification and
Z. Prentice Hall, Hemel Hempstead, 1991. xv

[51] R.A. Radice, N.K. Roth, A.C. O’Hara, and W.A. Ciarfella. A programming
process architecture. IBM Sys. J., 24(2/3): 79–90, 1985. 185

[52] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Commun.
ACM, 17(7), July 1974. 41, 42

[53] J. M. Spivey. The fuzz Manual. Computing Science Consultancy, Garsington,
Oxford, 1988. xv

[54] J.M. Spivey. Understanding Z: a specification language and its formal semantics.
DPhil thesis, Oxford University Computing Laboratory, Oxford, UK, October
1985. Subsequently published as [55]. xv, 191

[55] J.M. Spivey. Understanding Z: A Specification Language and its Formal Seman-
tics. Number 3 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, 1988. xv, 246

[56] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, Hemel Hemp-
stead, 1989. xv

[57] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, Hemel Hemp-
stead, 2nd edition, 1992. xv, 13, 191, 245

[58] J. Staunstrup, editor. Program Specification: Proceedings of a Workshop,
Aarhus, Denmark (August 1981), volume 134 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, Berlin, 1982. 167

[59] J. E. Stoy and C. Strachey. OS6 – an operating system for a small computer.
Comput. J., 15(2): 195–203, 1972. 147

[60] B. A. Sufrin. Formal specification of a display-oriented text editor. Sci. Comput.
Program., 1: 157–202, May 1982. 67

[61] B. A. Sufrin. Mathematics for system specification. Lecture notes, Programming
Research Group, Oxford University, 1983–84. 99

[62] B. A. Sufrin. Formal specification of an electronic mail system. In Formal
Methods and the Design of Effective User Interfaces, Proceedings of HCI’86.
Cambridge University Press, Cambridge, 1986. 67

[63] J.C.P. Woodcock. Luptonian triads explained. Oxford University Computing
Laboratory, 1989. 200



BIBLIOGRAPHY 247

[64] J.C.P. Woodcock. Mathematics as a management tool: proof rules for promotion.
In B.A. Kitchenham, editor, Software Engineering for Large Software Systems.
Elsevier, Amsterdam, 1990. 198

[65] Jim Woodcock and Martin Loomes. Software Engineering Mathematics. Pitman,
London, 1988. xv, 3

[66] J.B. Wordsworth. Practical experience of formal specification: a programming
interface for communications. In C. Ghezzi and J. McDermid, editors, ESEC89:
2nd European Software Engineering Conference, volume 387 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1989. 194, 200

[67] J.B. Wordsworth. The CICS application programming interface definition. In
Nicholls [48]. 183, 192

[68] B.M. Yelavich. Customer information control system – an evolving facility. IBM
Sys. J., 24(2/3), 1985. 183



248



Index

This index includes all schemas, explicit components of schemas, basic types, axiomatic and
generic definitions, disjoint unions and members of disjoint unions used in the case studies.
Such entries are set in italic type. The entries for components of schemas and members of
disjoint unions give the name of the schema or disjoint union, respectively, in which they
are defined.

a!
in ExceptionCheck 173

a?
in FileAdd 12
in HandleCondition 171

A 126, 130
abort

in ACTION 170
ACTION 170
Add 12, 15, 88
Add Employee 124
Add Visitor to Meeting 95
Add Visitor to Meeting 0 86
admin

in DD13 118
after 44
amount?

in ∆Dining State 91
Append 207
Append0 204
AppendQ 209
AppendQN 0 210
AppendQN 1 211
AppendQN 2 211
ar

in TSQ 203
AS 52
∆AS 53
ΦAS 53
Ascending 12
ASSEMBLY 130, 136
auth

in DD1 102
in DD9 107
in DD13 118

AuthoritarianDD 103
authority 110
AUTHORITY 113

AV 33, 35
∆AV 35, 36
avail

in AV 33, 35
in TN 34, 36

BAdd 24
BAdd0 22
BAdd1 22
bag 10

addition 11
items 10

Balance
in Response 122

basic type 4
BDelete 24, 26, 27
BDelete0 22
BDelete1 22
BEnd 24
BEnd0 21
BLocate 27
BLocate0 27
BlockId 25
BLookUp 24
BLookUp0 22
BLookUp1 22
Book Conf Room 95
Book Conf Room 0 89
Book Dining Room 95
Book Dining Room 0 91
Book Hotel Room 96
Book Hotel Room 0 84
Book Transport 96
Book Transport 0 84
Break 33, 35, 37
BReplace 24
BReplace0 21, 22
BReplace1 22, 23

249



250 Index

BSearch 24
BSearch0 20
bst

in BDelete 26, 27
in BST1 25
in BST2 25
in ∆BST 20

bst ′

in BDelete 26, 27
in ∆BST 20

bst0 20
BST 19
∆BST 20
ΦBST 22
ΞBST 20
BST1 25
BST2 25
BStart 24
BStart0 21
BYTE 203, 43

c?
in ExceptionCheck 173
in HandleCondition 171
in IgnoreCondition 172

Call 31, 35, 36, 37
canaccess

in AuthoritarianDD 103
in NotQuiteSoAuthoritarianDD 103

Cancel Conf Rooms 95
Cancel Conf Rooms 0 89
Cancel Conf Rooms 1 89
Cancel Dining Room 95
Cancel Dining Room 0 91
Cancel Dining Room 1 91
Cancel Hotel Room 96
Cancel Hotel Room 0 84
Cancel Meeting 95
Cancel Meeting 0 87
Cancel Meeting 1 94
Cancel Meeting Arrangements 0 95
Cancel Meeting Arrangements 1 96
Cancel Meeting Fail 94
Cancel Transport 96
Cancel Transport 0 84
canretrieve

in DD6 104
in DD9 107
in DD15 119

canupdate
in DD6 104
in DD9 107
in DD15 119

Capacity 160

CAVIAR 93
∆CAVIAR 94
CAVIAR Init 93
CHAN 50, 69
∆CHAN 51
ChanErr 64
cid !

in open 66
in openCS 52

cid?
in ΦAS 53
in CidErr 64
in closeCS 52
in fstat 55
in read 65
in readAS 54
in seekAS 54
in writeAS 54

CID 52
CidErr 64
client?

in ∆RS 156
Client 142
ClockIn 124
ClockIn 0 123
∆Clocking 122
ClockOut 124
ClockOut 0 123
closeCS 52
closeFS 59
CON 30
CONDITION 170, 207
Conference Init 89
Conference State 89
∆Conference State 89
cons

in efficientTN 31
in TN 30, 34, 36

console 216
contained

in BST1 25
contents

in FILE 142
contents!

in lsNS 56
in ReadFile 144
in UpdateData 146

contents?
in ReadData 145
in StoreFile 143
in UpdateData 146

core
in IS 133

cost !



Index 251

in DeleteFile 144
in ∆RS 156
in StoreFile 143

cr !
in Worked 123

CR 73
Create 85
created

in FILE 142
createFS 58
createFS0 58
Create Meeting 94
Create Meeting 0 87
createNS 55
CreateQ 209
createSS 47
Create Visitor 96
Create Visitor 0 92
CS 52
∆CS 52
cstore

in CS 52

d?
in Delete Visitor 0 97
in FileUpdate 8

data!
in read 65
in readAS 54
in readFILE 45

data?
in writeAS 54
in writeFILE 46

Date 73
date of session 73
date of time 73
DD0 102
DD1 102
DD2 103
DD3 103
DD4 104
DD5 104
DD6 104
DD7 105
DD8 106
DD9 107
DD10 111
DD11 112
DD12 113
DD13 118
DD14 118
DD15 119
DDS 108
2DDS 108

∆DDS 108
∆DDS1 113
Default 171
delegates

in DD3 103
in DD9 107
in DD14 118

Delete 16, 6
DeleteElement 115
DeleteFile 144
DeleteProperties 115
DeleteQ 209
DeleteQ0 209
Delete Visitor 97
Delete Visitor 0 97
Delta (∆) 14
Destroy 85
destroyFS 59, 61
destroyNS 56
destroySS 48
Destroy Visitor 96
Destroy Visitor 0 92
dev

in MapName 216
DeviceCapacity 68
dialled?

in Call 31, 35, 37
Diary 87
∆Diary 88
Diary Init 88
Dining Init 90
Dining State 90
∆Dining State 91
dir?

in lsNS 56
direncode 58
dirformat 57
dirstored 57
disjoint 30
Display 109
dnames

in NS 56
domain (dom) 4
domain exclusion (−C) 7
DR 73

E 101
efficientTN 30, 31, 34, 36
EI 112
eid?

in DeleteElement 115
in FOR 110
in InsertNewElement0 114

Element 110



252 Index

elementcontext
in DDS 108

elements
in DD0 102
in DD1 102
in DD9 107
in DD13 118

Elements 110
Empty 23
engaged !

in Engaged 32, 35, 37
Engaged 32, 35, 36, 37
Erase 88
error

in CONDITION 170
ERROR 207
ExceptionCheck 173
Exceptions 170
∆Exceptions 171
exists

in Pool 85
exists D

in Meeting State 86
expires

in FILE 142
in RS 156

expires!
in ReadFile 144
in ReadStoredFile 148

expires?
in StoreFile 143

f 117
in FileAdd 12
in FileUpdate 8

f ′

in FileAdd 12
in FileUpdate 8

fid
in CHAN 50, 69
in createNS 55
in createSS 47
in destroySS 48
in open 66
in ΦSS 49

fid ′

in lookupNS 55, 63
in open 66

FID 47
file

in read 65
in readAS 54
in readFILE 45
in ΦSS 49

in writeAS 54
in writeFILE 46

file ′

in readFILE 45
in ΦSS 49
in writeAS 54
in writeFILE 46

FILE 142, 43, 67
FileAdd 12
FileNumberLimit 67
files

in ∆FS 143
in FS 143

files ′

in ∆FS 143
FileSizeLimit 67
FileUpdate 8
Fix 33, 35, 37
Flexi 122
∆Flexi 122
ΞFlexi 122
Flexitime Hours

in Flexi 122
FOR 110
Forest 117
framing 21
from?

in Append0 204
in Standard Append 205
in Write0 204

FS 143, 57
∆FS 143, 63
fstat 55
fstore

in SS 47, 67, 68
function

application 4
empty 4
override (⊕) 5
partial 4, 7

GetNickname 151
GuestClient 152

handle?
in ExceptionCheck 173

HandleCondition 171
Handler

in Exceptions 170
HangUp 32, 35, 36, 37
has

in DD10 111
Hotel Init 84
Hotel State 83, 84



Index 253

HR 73

i?
in Add 88

I 112
ident !

in Add Employee 124
ident?

in ∆Clocking 122
in Unknown 124

Ident 122
IdUnknown

in Response 122
IgnoreCondition 172
Implementation 134, 135
in 127

in ASSEMBLY 130, 136
in Flexi 122
in Implementation 135
in Phase1 133
in PreASSEMBLY 131

in?
in Sort 11
in SortNoDup 12

In
in Response 122

in1?
in Merge 12

in2?
in Merge 12

ind !
in ∆Clocking 122
in Unknown 124

info
in Diary 87

info 1
in Diary 87

inhibit 112
Initial 171
inputs 5
InsertKey 124
InsertNewElement 114
InsertNewElement0 114
InsertNewProperties 115
InsertNewProperties0 114
interval?

in NotAvailable 160
in Reserve 158

Interval 157
into!

in Read0 205
in Remove0 204
in Standard Remove 205

in use

in Hotel State 84
in R U 76

in use D
in Conference State 89

IS 133
item!

in Append0 204
item?

in OutofBounds 207
in Read0 205
in Write0 204

ItemErr
in CONDITION 207

items 10

K 112
Key 7

lab 127, 130
length?

in read 65
in readAS 54
in readFILE 45

level !
in BLocate0 27

Level 105
LI 73
linkFS 63
linkNS 62
ln?

in MapName 216
in ToSetL 217

LName 215
lns!

in ToSetL 217
lns?

in MapSet 216
LookUp 15, 6
lookupNS 55, 63
LReceive 216
LSend 216
LSendM 216
LSendReceive 216
lsNS 56
ltop

in LtoP 216
LtoP 216
ΞLtoP 216

m!
in NReceive 0 215

m?
in NSend 0 214
in NSendM 0 214



254 Index

in Pre 217
M 126, 130, 73
MapName 216
MapName PreIn 217
mapping 4
MapSet 216
master

in DD8 106
in DD9 107

maxbytes 68
max cap 90
maynotupdate

in DD5 104
in DD9 107

mayretrieve
in DD4 104
in DD9 107
in DD14 118

mayupdate
in DD14 118

meeting?
in Cancel Meeting Arrangements 0 95

Meeting Init 86
Meeting State 86
∆Meeting State 86
Merge 12
Message 213
minbytes 68
mnem 127, 130
module 74

decoration 92
instantiation 74, 79
parameters 74

Money 142
M OP 94
moveFS 63
moveNS 62
M SYS 93
multiset 10
M V ::r?

in Cancel Meeting Fail 94
M V ::t?

in Cancel Meeting Fail 94

n!
in MapName 216

n?
in NReceive 0 215
in NSend 0 214
in PreIn 217
in seekoffset 69
in ToSet 214

n24bit 69
name!

in StoreFile 143
name?

in createNS 55
in DeleteFile 144
in destroyNS 56
in lookupNS 55, 63
in NameErr 64
in open 66
in ReadFile 144
in ReadStoredFile 148

Name 140, 213
NameErr 64
NDEV 215
∆NDEV 215
newelement?

in InsertNewElement0 114
newname?

in linkNS 62
in moveNS 62

newposn?
in seekAS 54
in seekCHAN 51

newprops?
in InsertNewProperties0 114

nickname
in ∆RS 156

Nickname 151
nil 102

in ACTION 170
NIN 214
∆NIN 214
ΞNIN 215
niq

in NIN 214
No

in Status 32
NoDuplicates 12
NoFreeCids

in REPORT 63
NonDecreasing 10
NoneLeft 207
NonExistent 209
noq

in NOUT 213
NoSpace

in CONDITION 207
NoSuchCid

in REPORT 63
NoSuchName

in REPORT 63
NoSystem 210
Not Available

in Report 156
NotAvailable 160



Index 255

NotFound 23
NotPresent 17
NotQuiteSoAuthoritarianDD 103
Not within any block

in Report 16
NOUT 213
∆NOUT 213
ΞNOUT 215
now

in NotAvailable 160
in Reserve 158
in Scavenge 159
in TooManyClients 161

NReceive 215
NReceive 0 215
ns!

in MapSet 216
in ToSet 214

ns?
in NSendM 0 214

NS 56
NS0 55
ΞNS0 55
NSend 215
NSend 0 214
NSendM 215
NSendM 0 214
NSendReceive 215
NSendReceive 0 215
nstore

in NS0 55
nts

in ∆NTS 210
nts ′

in ∆NTS 210
NTS 210
∆NTS 210
ΦNTS 210
null 108
num 127, 130
number?

in ReadData 145
in ReadStoredFile 148

Number 110

offset?
in readFILE 45
in seekoffset 69
in writeFILE 46

Ok
in REPORT 63

OK
in Report 16

oldname?

in linkNS 62
in moveNS 62

op 127, 130
opcode 127, 130
open 64, 66
openCS 52
openFS 59
operand 127, 130
operation 60
OPSYM 126, 130
other !

in Engaged 32, 35, 37
out 129

in ASSEMBLY 130, 136
in Implementation 135
in Phase2 134

out !
in Merge 12
in Sort 11
in SortNoDup 12

Out
in Response 122

OutofBounds 207
OutOfSpace 207
outputs 5
override

distributed 20
owner

in DD1 102
in DD9 107
in DD13 118
in FILE 142

p
in TSQ 203

p?
in seekoffset 69

PATH 25
Period 121
ph?

in ∆TN 31, 34, 36
Phase1 133
Phase2 134
phone?

in Break 33, 35, 37
in Fix 33, 35, 37

PHONE 29
pieces!

in ReadData 145
in ReadStoredFile 148

pieces?
in UpdateData 146

Pool 85
∆Pool 85



256 Index

ΞPool 85
Pool Init 85
posn

in CHAN 50, 69
powerset 8
Pre 217
PreASSEMBLY 131
PreIn 217
Present 17
priv

in DD7 105
in DD9 107

privacy 110
promotion 21
properties?

in Display 109
props?

in DeleteProperties 115

q
in ∆Q 205
in QLike 206

q ′

in ∆Q 205
Q 205
∆Q 205
QIdErr

in CONDITION 207
QLike 206
queue!

in TSRemote 211
queue?

in CreateQ 209
in DeleteQ0 209
in NonExistent 209
in ΦTS 208
in TSRemote 211

r 212
r?

in R U Book 77
in R U Cancel 77
in R U Del Res 78

range (ran) 4
read 64, 65
Read 207
Read0 205
readable!

in Display 109
readAS 53, 54
readCHAN 51
ReadData 145
readFILE 45
ReadFile 144

readFS 59
ReadOut 124
ReadQ 209
ReadQN 0 210
ReadQN 1 211
ReadQN 2 211
readSS 49
ReadStoredFile 147, 148
Rebate 144
Record 7
recorded

in Diary 87
R≡U 81
R≡U Book 81
R≡U Cancel 81
R≡U Init 81
ref 127, 130
RelMinutes 123
rem 212
remote 211
Remove 207
Remove0 204
RemoveQ 209
RemoveQN 0 210
RemoveQN 1 211
RemoveQN 2 211
Remove Visitor from Meeting 95
Remove Visitor from Meeting 0 87
rep!

in BDelete 26, 27
in BReplace0 21
in BReplace1 23
in Empty 23
in NotFound 23
in NotPresent 17
in Present 17
in STDelete 26
in STReplace 26
in Success 17

repeat 212
Replace 12, 16
report !

in DeleteQ0 209
in ERROR 207
in ∆FS 63
in NonExistent 209
in NoSystem 210
in open 66
in read 65
in ∆RS 156
in ServiceError 160
in Successful 207

Report 156, 16
REPORT 63



Index 257

reqs
in efficientTN 31
in TN 30, 34, 36

ReservationCost 158
Reserve 158
Response 122
retrieval 110
R�U 80
∆R�U 80
ΞR�U 80
R�U Book 80
R�U Cancel 81
R�U Del Res 81
R�U Del User 81
R�U Init 80
robust 16
RootFid 57
R�U 79
∆R�U 80
ΞR�U 80
R�U Book 80
R�U Cancel 80
R�U Del Res 80
R�U Del User 80
R�U Init 79
RS 156
∆RS 156
rsvd

in Dining State 90
rt

in IS 133
ru

in Hotel State 84
in R U 76

R U 76
∆R U 76
R U Book 77
R U Cancel 77
R U Del Res 78
R U Del User 78
R U Init 76

s?
in Add 12, 15
in BDelete 26, 27
in BLocate0 27
in BReplace0 21
in BReplace1 23
in BSearch0 20
in Delete 16, 6
in LookUp 15, 6
in NotFound 23
in NotPresent 17
in Present 17

in Replace 12, 16
in STDelete 26
in STReplace 26
in Update 5

Scavenge 159
schema

conjunction 17
disjunction 18
horizontal 14
inclusion 15
operation 5

seekAS 53, 54
seekCHAN 51
seekoffset 69
sequence (seq) 9
Service Error

in Report 156
ServiceError 160
Session 73
SetShutdown 159
shift 46
shutdown

in RS 156
shutdown?

in SetShutdown 159
SI 73
size

in seekoffset 69
size!

in fstat 55
Size 143
Sort 11
SortNoDup 12
SS 47, 67, 68
ΦSS 49
st

in Add 12
in Delete 6
in IS 133
in LookUp 6
in Replace 12
in ∆ST 14
in STDelete 26
in STReplace 26
in Update 5

st ′

in Add 12
in Delete 6
in LookUp 6
in Replace 12
in ∆ST 14
in STDelete 26
in STReplace 26
in Update 5



258 Index

st0 14
ST 14
∆ST 14
ΞST 14
STAdd 17
Standard Append 205
Standard Hours

in Flexi 122
Standard Remove 205
start?

in ReadData 145
in ReadStoredFile 148
in UpdateData 146

state 14, 5
Status 32
STDelete 17, 26
STLookUp 17
store

in DD0 102
in DD1 102
in DD9 107
in DD13 118

StoreFile 143
STReplace 17, 26
success 63

in CONDITION 170
Success 17

in CONDITION 207
in Report 156

Successful 207
SYM 126, 130, 13, 4
symbol table 3
Symbol not found

in Report 16
Symbol not present

in Report 16
Symbol present

in Report 16
symtab 127
sysid !

in TSRemote 211
sysid?

in NoSystem 210
in ΦNTS 210
in TSRemote 211

SysId 210
SysIdErr

in CONDITION 207
system

in ACTION 170

t?
in Create 85
in ∆Clocking 122

in ∆Diary 88
in ∆R U 76
in Destroy 85

Tariff 143
threatens!

in SetShutdown 159
Time 73, 121, 142
TN 30, 34, 36
∆TN 31, 34, 36
Too Many Clients

in Report 156
TooManyClients 161
ToSet 214
ToSetL 217
ToSetL LSendM 217
ToSet NSendM 0 214
TR 73
Transport Init 84
Transport State 84
ts

in ∆TS 208
ts ′

in ∆TS 208
TS 208
∆TS 208
ΦTS 208
TSElem 203
TS Initial 208
TSQ 203
∆TSQ 204
TSQ Initial 203
TSQName 208
TSRemote 211
Types 112

u?
in FileUpdate 8
in R U Book 77
in R U Cancel 77
in R U Del User 78

Unknown 124
unlinkFS 59
unlinkFS0 59
until !

in NotAvailable 160
in Reserve 158

Update 5
UpdateData 146
UpdateStoredFile 148
ur

in Hotel State 84
in R U 76

usedfids
in FS 57



Index 259

user
in DDS 108

users
in Hotel State 84
in R U 76

users D
in Conference State 89
in Meeting State 86
in Transport State 84

v !
in BLocate0 27
in BSearch0 20
in LookUp 15, 6

v?
in Add 12, 15
in BReplace0 21
in BReplace1 23
in Delete Visitor 0 97
in Replace 12, 16
in STReplace 26
in Update 5

V 73
VAL 13, 4
Visitor Init 92
Visitor State 91
V OP 96
V SYS 93
ΞV SYS 94

wait
in ACTION 170

when
in ∆FS 143

who
in ∆FS 143

worked
in Flexi 122

Worked 123
Write 207
Write0 204
writeAS 53, 54
writeCHAN 51
writeFILE 46
writeFS 59
WriteQ 209
WriteQN 0 210
WriteQN 1 211
WriteQN 2 211
writeSS 49

x?
in Add 88
in Create 85

in Destroy 85
in Erase 88

Xi (Ξ) 14

Yes
in Status 32

zero 46
ZERO 46


	I Tutorials
	Small examples of specification using mathematics
	Ian Hayes
	Introduction
	A symbol table
	File update
	Sorting
	Solutions to exercises

	Block-structured symbol table
	Ian Hayes
	Introduction
	Symbol table
	The state
	Operations
	Errors

	Block-structured symbol table
	The state
	Operations
	Errors

	Other approaches
	Solutions to exercises

	Telephone network
	Carroll Morgan
	Introduction
	The specification
	Call
	HangUp
	Engaged

	Exercises
	Solutions to exercises
	Supplementary exercises


	II Software engineering
	Unix filing system
	Carroll Morgan and Bernard Sufrin
	Introduction
	Scope of the specification
	The specification
	Bytes and files
	Reading and writing
	File storage
	Reading and writing stored files -- framing
	Hiding and simplification
	Sequential access to files
	Channel system
	The access system
	A file naming system
	Pathnames and directories
	Directories are files
	The complete filing system
	Honesty of definitions
	Observation renaming and schema composition
	Definition of error conditions

	Summary
	Appendix: differences from Unix
	File size
	Directory size
	Storage medium capacity
	Seek
	Representation of numbers


	CAVIAR
	Bill Flinn and Ib Holm Sørensen
	Introduction
	The case study
	Identification of the basic sets
	The subsystems of CAVIAR
	Modules
	Module: Resource_User[T, R, U]
	Specialisations of the resource--user system
	Module: Exclusive_Resource[T, R, U]
	Module: Sole_Resource[T, R, U]
	Module: Sole_Exclusive_Resource[T, R, U]
	The specification library

	Classification and instantiation
	Some laws for CAVIAR
	Matching systems with models
	Module: Hotel_Reservation
	Module: Transport_Reservation

	The meeting attendance subsystem
	Module: Resource_Pool[T, X]
	Module: Meeting_Visitor

	The meeting resource subsystems
	Module: Diary_System[T, X, IX]
	Module: Conference_Room_Booking
	Module: Dining_Room_Booking
	Module: Visitor_Pool
	The construction process

	Module: CAVIAR
	Combining subsystems to form the state
	Operations that involve meetings only
	Operations that involve visitors only
	A general visitor removal operation

	Conclusion

	ICL Data Dictionary
	Bernard Sufrin
	Introduction
	Overview of the Data Dictionary System
	Access control
	Abstract information structures of DDS

	DDS dynamics: Part 1
	The state of a running DDS
	The display command
	Setting the element context

	Access-control information
	DDS dynamics: Part 2
	Inserting elements
	Deleting elements

	Prospects
	Appendix: potential simplifications

	Flexitime specification
	Ian Hayes
	Introduction
	State
	Operations

	Simple assembler
	Ib Holm Sørensen and Bernard Sufrin
	Introduction
	The structure of instructions

	Requirements
	Symbol definitions
	Symbolic operands
	Numeric operands
	Symbolic opcodes 
	Operands of machine instructions 
	Opcode fields
	Specification summary
	Consequences of the specification
	Discussion

	High-level design
	Design of the first phase
	Design of the second phase
	Putting the phases together
	Correctness of the design
	Discussion



	III Distributed Computing
	The role of mathematical specifications
	Roger Gimson and Carroll Morgan
	Introduction
	A first example
	The first compromises
	A compromise avoided
	Modularity and composition of services
	Conclusions

	Authentication of usernames
	Roger Gimson and Carroll Morgan
	Nicknames and usernames
	Authentication
	Guest user

	Time service -- user manual
	Roger Gimson and Carroll Morgan
	Time service operation
	Error reports
	Modula-2 interface

	Reservation service -- user manual
	Roger Gimson and Carroll Morgan
	Introduction
	Reservation service operations
	Error reports
	Modula-2 interface


	IV Transaction Processing
	Application to industry
	Ian Hayes
	Introduction
	Uses of formal specification
	The specification process
	Notation

	A sample specification
	Exceptional conditions specification
	The state
	The operations
	Exception checking

	Questions raised
	Exceptional conditions
	Interval control
	Interaction between modules

	Problems with specification
	Communication problems
	The right level of abstraction
	Technical problems

	Conclusions
	Appendix: exceptional conditions manual

	CICS restructure
	Steve King
	Introduction
	The CICS program product
	Early experiments
	The decision to use Z
	Education and tools
	Results
	Subjective results
	Quantitative results

	The Oxford--Hursley collaboration
	Conclusions

	CICS API specification
	Steve King
	Introduction
	Using Z to describe interfaces
	The CICS Application Programming Interface (API)
	Reasons for specifying the API
	How the specifications were written
	Experiences
	Communication problems
	The `right' level of abstraction
	Putting modules together
	Parallelism
	Distributed systems

	Results
	Conclusions

	CICS Temporary Storage
	Ian Hayes
	A single queue
	Operations
	Errors

	Named queues
	A network of systems
	A note on the current implementation


	CICS message system
	Ian Hayes
	Message output
	Multiple destinations
	Message input
	Send and receive 
	Combining input and output
	Logical names
	Multiple logical destinations
	Domains of the operations


	V Appendices
	Glossary: Z mathematical notation
	Definitions and declarations
	Axiomatic definitions
	Generic definitions
	Logic
	Sets
	Numbers
	Binary relations
	Functions
	Orders
	Sequences
	Bags
	Generalised bags
	Free type definitions

	Glossary: Z schema notation
	Schema definition
	Schema operators
	Operation schemas
	Operation schema operators

	Index


